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Real-Time Systems

Ledure 12: Location Reachahlity
(or: The Region Automaton)
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Albert-Ludwigs-Universitat Freiburg, Germany
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Last Lecture:

Networks of Timed Automata

Uppaal Demo

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What are decidable problems of TA?
How can we show this? What are the essential premises of decidability?
What is a region? What is the region automaton of this TA?
What's the time abstract system of a TA? Why did we consider this?
What can you say about the complexity of Region-automaton based
reachability analysis?

Content:

Frrmred-FramsitionS : e oftirmed

Location Reachability Problem

Constructive, region-based decidability proof
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The Location Reachahlity Problem

The Location Reachallity Problem
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Given: A timed automaton A and one of its control locations £.

Question: Is ¢ reachable?

That is, is there a transition sequence of the form

Uimis 10) 25 (l1,11) 225 (L, v9) 25 .. 2% (0, 1) (bl O, = ¢

in the labelled transition system 7 (A)?

Note: Decidability is not soo obvious, recall that
clocks range over real numbers, thus infinitely many configurations,

at each configuration, uncountably many transitions LN may originate

Consequence: The timed automata as we consider them here cannot
encode a 2-counter machine, and they are strictly less expressive than DC.
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

o Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

e Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

o Lem. 4.20: location reachability
of A is preserved in U(A).

o Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

o Lem. 4.32: location reachability of U (A)
is preserved in R(A).

o Lem. 4.28: R(A) is finite.

Withou Lossof Generality: Natural Constants
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Recall: Simple clock constraints are p =z ~c |z —y~c leAp
with 2,y € X, c € Qf, and ~€ {<,>, <, >}

o Let C(A) = {c € Qf | c appears in A} — C(A) is finite! (Why?)
o Let t4 be the least common multiple of the denominators in C(A).

o Let t4 - A be the TA obtained from A by multiplying all constants by ¢ 4.
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Withou Lossof Generality: Natural Constants
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Recall: Simple clock constraints are p i=x ~c|z—y~c|pAgp
with 2,y € X, c € Qf, and ~€ {<,>, <, >}

Let C(A) = {c € Q] | c appears in A} — C(A) is finite! (Why?)
Let ¢4 be the least common multiple of the denominators in C(A).

Let ¢4 - A be the TA obtained from A by multiplying all constants by ¢ 4.

Then:
° C(tA .A) C INy.
o A location £ is reachable in t 4 - A if and only if £ is reachable in A.
A

That is: we can without loss of generality in the following consider only
timed automata A with C'(A) C INy.

Definition. Let 2 be a clock of timed automaton A (with C'(A) C
INp). We denote by ¢, € INy the largest time constant c that
appears together with x in a constraint of A.

Deadallity of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U/ (.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.
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Helper: Relationd Compasition
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Recall: T(A) = (Conf(A), Time U Ba, {23 A € Time U By}, Cins)

A . . . .
o Note: The = are binary relations on configurations.

-
Definition. Let A be a TA. For all (¢1,11), (¢2,12) € Conf(A),
<€1,I/1> A—l) o )\—2> <€2,V2>
if and only if there exists some (¢',1') € Conf(A) such that

(01,01) 25 (€', 1) and (€', 1) 225 {0y, ).

Helper: Relationd Composition
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Recall: T(A) = (Conf(A), Time U Ba, {23 A € Time U By}, Cins)

A . . . .
o Note: The = are binary relations on configurations.

-
Definition. Let A be a TA. For all (¢1,11), (¢2,v2) € Conf(A),

<£1,I/1> A—l) (e} )\—2) <£2,V2>
———)

if and only if there exists some (¢',v") € Conf(A) such that

(b1,11) 25 (€', /) and (€, 0') 225 (05, 15).

Remark. The following property of time additivity holds.

o t t t1+t
th,tQETlmei—l>O—2> = g)
\m—y
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Time-abstract Transition System

-

Definition 4.19. [Time-abstract transition system|
Let A be a timed automaton.

The time-abstract transition system {(.A)

is obtained from 7 (A) (Def. 4.4) by taking

U(.A) = (Conf(.A),B?;, {:a>| o€ B?!}, Cmi)
where

:a>g Conf(A) X C’onf(.A)

tions of A and o € By an action. Then
(V) = ',V

if and only if there exists t € Time such that

0,y 50 X (0, V).

is defined as follows: Let (¢,v), (¢',v') € Conf(A) be configura-
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- J
933
Example (6,v) == (¢',v') iff It € Time o (£,v) 5 0 5 (¢, V)
press?
press? m press?
‘\e =0 light T3
press?
>3 o
L 35) —>fss.
<4r/’(=3> ;5 <°',k=3.5> M), 1:05 & & ‘4@ (M"é'k, bol o ol (,& dg)
F‘g . YES, telRt apks, o{__f‘&?
Z’“lx’-(‘) => <l‘d4i x=0D oy :, o R d-‘ﬁ&?M E/;'O
Cof ey = <t xes> My b0 Ol x =2 gl
l tot acha ’ﬁms(,,_‘

<o{[—,x:)) ?=) (&{ﬂl.ﬁx:_?) A, Camwod fo ,ﬁm ‘4( % l‘bl‘/ ol

g <Had,x=(3‘) g(%,\ai?) VS, 420 and o7peep!
Ll > 2 Ll ) WD) wo oty e o ol
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Location Reachability is preserved in U (.A)
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Lemma 4.20. For all locations ¢ of a given timed automaton A
the following holds:

Cis; reachable in 7(A) if and only if ¢ is;reachable in U(A).

= @

Proof:
(Y
Silaw 020, ie. scadenus (bl be eﬁufé

\‘__> CleachAQ w 7(*
© Hoe 5 <G 258,45 —)%<€ol)o,_7 —%(%W
u__\/ﬁ,_,

—-’-)((,’ WA B8 gt %

’ o
ia,((.\.,,v.,.,,)-;..<5,,,,o4.,_3d—“3 APRE ¢ niet),

=2 <85 2;30,,09 t&—,)&.-.,z&.,)/ b0

by *\AOL

Deadallity of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

O Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

O Lem. 4.32: location reachability of U/(.A)

is preserved in R(A).

O Lem. 4.28: R(A) is finite.
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press?

z:=0 gl <3
press?
x >3 @
A (bright, z = 0) == ... }"’0 /d'};[",«k"”?)
&7 (bright,z = 0. 1) £ } 0¢x<t l@i}?ﬂ;‘,xea”
A
T (rightr=1.0) 2230t xap xx
& ) : $>0 v
.-Q//Z! (bright, z = 3. 0) =2 .. g3 X1  vv
\)(es,, : X50Ax¢r v/
o - ress -
G- Y (bﬂ$ﬁt T = 3001) =. Isox x1ox
PlresS <||ght xr = 0> %@ / /@
o <0ff$—0> press. ) e ;&(
k ress Sq“(b
S (offm—29>p % aq
. 'O"x>" press a“’él‘d'h.
5 S“ff (off,x = 3 0> o dr=3
& press
N (off, x—3001> s
(off, x——1271415>P&$. )
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Distingushing Clock Valuations: One Clock

o Assume A with only a single clock, i.e. X = {z} (recall: C(A) C IN.)

x£3A%23
+ A could detect, for a given v, ey. 19, s —0
whether v(z) € {0,..., ¢, }.
STax¢2
o A cannot distinguish 14 and v, eg. ki
if vi(z) € (k,k+1),i=1,2,
and k € {0,...,¢c, — 1}.
C e K> Cp
o A cannot distinguish v; and v €9. O— 30

if vi(x) > ¢y i =1,2.

o If ¢, > 1, there are (2¢, + 2) equivalence classes:
{{0},(0,1),{1},(1,2),...,{cz}, (ca, 00)}

If v1(x) and vo(x) are in the same equivalence class,
then 11 and v, are indistiguishable by A. 14
33
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Distingushing Clock Valuations: Two Clocks

o X={z,y}, co=1,¢,=1

0441704444 A 9d>x

x=0 A %’1

X=0ayz=1 I
U\’ /- ”(’)=0:’J.
0 A 0Ly
S\ x=0h9=0 0

Helper: Floor andFraction
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¢ Recall:

Each ¢ € Ra' can be split into
o floor |¢] € Ny and
« fraction frac(q) € [0,1)
such that
q = lq] + frac(q).
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An Equivalence-Relation onValuations
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Definition. Let X be a set of clocks, ¢, € INy for each clock
x € X, and vy, vy clock valuations of X.

We set 11 = vy iff the following four conditions are satisfied.
(1) Forallz € X,
|v1(z)| = [v2(z)] or both vi(z) > ¢, and va(x) > cq-
(2) Forall 2 € X with () < cs,
frac(v1(x)) = 0 if and only if frac(va(z)) = 0.
(3) Forall z,y € X,
[1(z) —ni(y)] = [v2(z) —va(y)]

or both |v1(z) — v1(y)| > ¢ and |va(z) — v2(y)| > c.
(4) For all z,y € X with —c < v1(z) —i(y) <,

frac(vi(z) — vi(y)) = 0 if and only if frac(ve(z) — v2(y)) = 0.

Where ¢ = max{cz, cy}.

o J

1733

Example: Regions
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(2) Ve e X :11(z) < co

() Va,y € X: () - viy)] = [v2(2) — va(y))

(4) Vz,ye X : —c<wvi(z) —1ni(y) <c =

1) Ve e X : [1i(x)] = |va(z)]| V (ni(x) > o Ava(z) > ca)

= (frac(v1(z)) =0 <= frac(r2(z)) = 0)

V (jn(z) —vi(y)l > cAfra(z) —v2(y)| > )

G4 (Frac(n(z) — 1 (y) =0 > frac(va(z) — va(y)) = 0)

0V, ¢V
“) SV
y Q) Vv
6) v
G) vV
N A
(7] (1) N4
' Q) Gyld)-06):-005 ;-025)=-1
{ Pl . W)~ U(y)= a5 [ 03] =1
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Regions
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Proposition. = is an equivalence relation.

Definition 4.27. For a given valuation v we denote by [v] the
equivalence class of 7 We call equivalence classes of = regions.

(fu’/ yaps

The Region Automaton

— 12 - 2013-06-12 — Sdec
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7

Definition 4.29. [Region Automaton] The region automaton
R(A) of the timed automaton A is the labelled transition system

R(.A) — (Conf('R(.A)),B?!, {i>R(A)| (NS B?l},Cim‘)

where
Conf(R(A)) ={{,[v]) |t € L,v: X — Time,v = I({)},
for each o € By,

(0, [v]y < peay (¢, [V]) if and only if (¢,v) == (¢',1/)

in U(A), and

L Cini = {wim‘, [szD} n COTLf(R(.A)) with I/mi(X) = {0}

~

W@Hw

| o,

i)
?’[v]
'fﬁm;f"w_
Lo

Proposition. The transition relation of R(.A) is well-defined, that
is, independent of the choice of the representative v of a region [v].
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Example: Region Automaton
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press?

press? @ press?

z:=0

press?
x> 3

press

UA): . (bright, z = 0) =

press

o (bright, x = 0 1) =

press

4 (bright, z = 1 0) =

press

T e (bright,x = 1.31415) 2<%
B2 (light,z =0)

press
D’E‘ss
”'_."‘?*es X <0fFCL‘—20> press.
>:$ press
Lo (off,x = 3.0) 25 ...
B press

(off, x = 127>

Remark
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Remark 4.30. That a configuration (¢, [v]) is reachable in R(.A)
represents the fact, that all (¢, v) are reachable.

IAW: in A, we can observe v when
location £ has just been entered.

The clock values reachable by staying/letting time pass in £ are
not explicitly represented by the regions of R(A).

21/33
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[J Lem. 4.20: location reachability
of A is preserved in U(A).

[0 Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

O Lem. 4.32: location reachability of /(.A)
is preserved in R(A).

O Lem. 4.28: R(A) is finite.

Region Automaton Properties
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Lemma 4.32. [Correctness| For all locations ¢ of a given timed
automaton A the following holds:

¢ is reachable in U(.A) if and only if £ is reachable in R(A).

For the Proof:

7

Definition 4.21. [Bisimulation] An equivalence relation ~ on val-
uations is a (strong) bisimulation if and only if, whenever

vi ~ vy and <€7 V1> — <f/7l/i>

then there exists v} with 1/ ~ v and (£, vs) == (¢', V).

Lemma 4.26. [Bisimulation] = is a strong bisimulation.

2333
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U/(.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.

The Number of Regions
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Lemma 4.28. Let X be a set of clocks, ¢, € INy the maximal
constant for each z € X, and ¢ = max{c, | x € X}. Then

(2¢ + Q)IXI (4ec + 3)%|X|'(|X|—1)

is an upper bound on the number of regions.

.

Proof: [Olderog and Dierks, 2008]
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Observations Regarding the Number of Regions
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o Lemma 4.28 in particular tells us that each timed automaton (in our

o Note: the upper bound is a worst case, not an exact bound.

Deadallity of The Location Reachahlity Problem

definition) has finitely many regions.

— 12 - 2013-06-12 — Sdec —

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U/ (.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.

27/33

28/33



Putting It All Together
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Let A= (L,B,X,I,FE, {;,) be a timed automaton, ¢ € L a location.
R(A) can be constructed effectively.
There are finitely many locations in L (by definition).
There are finitely many regions by Lemma 4.28.
So Conf(R(A)) is finite (by construction).
It is decidable whether (Cp;x of R(A) is empty) or whether there exists
a sequence

(Cinis [Vin]) = Rreay (01, [1]) < Ra) - 2 Rea) (Cns [Vn))

such that ¢,, = ¢ (reachability in graphs).
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Putting It All Together
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Let A= (L,B,X,I,E, {;,) be a timed automaton, ¢ € L a location.
R(A) can be constructed effectively.
There are finitely many locations in L (by definition).
There are finitely many regions by Lemma 4.28.
So Conf(R(A)) is finite (by construction).
It is decidable whether (Cp;+ of R(.A) is empty) or whether there exists
a sequence
(Linis [Vinil) =>4y (0, 1)) = Rea) -~ Rea) Ens [Va))

such that ¢,, = ¢ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.
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The Constraint Reachahility Problem
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Given: A timed automaton A, one of its control locations ¢, and a clock
constraint .

Question: Is a configuration (¢, v) reachable where v |= ¢, i.e. is there
a transition sequence of the form

<€'mi71/ini> )\—1> <f1,V1> ﬁ) <€2,I/2> ﬁ) e A’”) <fn,ljn> = <f, l/>

in the labelled transition system 7 (A) with v = ¢?

Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

The Constraint Reachahility Problem
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Given: A timed automaton A, one of its control locations ¢, and a clock
constraint ¢.

Question: Is a configuration (¢, v) reachable where v |= ¢, i.e. is there
a transition sequence of the form

<€m¢,l/¢m‘> )\—1> <517V1> /\—2> <€2,V2> ﬁ) )\—n> <£n7Vn> = <f; V>

in the labelled transition system 7 (A) with v = ?

Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed
automata is decidable.
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The Delay Operation
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o Let [v] be a clock region.

o We set
delay[v] = {V' +t |V 2 v and t € Time}.

Y

1 —+

0 I p

0 1
3133

The Delay Operation
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o Let [v] be a clock region.

o We set
delay[v] = {V' +t |V = v and t € Time}.

0 I
0 1

o Note: delay[v] can be represented as a finite union of regions.

x

For example, with our two-clock example we have

delaylr =y =0] = 24
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