Real-Time Systems

Lecture 13: Regions and Zones

2013-06-18

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- 13 - 2013-06-18 - main

• Started location reachability decidability (by region construction)

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What is a region? What is the region automaton of this TA?
 - What's the time abstract system of a TA? Why did we consider this?
 - What can you say about the complexity of Region-automaton based reachability analysis?
 - What's a zone? In contrast to a region?
 - Motivation for having zones?
 - What's a DBM? Who needs to know DBMs?

• Content:

- 13 - 2013-06-18 - Sprelim

- Region automaton cont'd
- Reachability Problems for Extended Timed Automata
- Zones
- Difference Bound Matrices

The Region Automaton

- 13 - 2013-06-18 - Sdec -

Proposition. The transition relation of $\mathcal{R}(\mathcal{A})$ is **well-defined**, that is, independent of the choice of the representative ν of a region $[\nu]$.

Remark

Remark 4.30. That a configuration $\langle \ell, [\nu] \rangle$ is reachable in $\mathcal{R}(\mathcal{A})$ represents the fact, that all $\langle \ell, \nu \rangle$ are reachable. IAW: in \mathcal{A} , we can observe ν when location ℓ has **just been entered**.

The clock values reachable by staying/letting time pass in ℓ are **not explicitly** represented by the regions of $\mathcal{R}(\mathcal{A})$.

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple — w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system U(A) — abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of A is preserved in U(A).
- ✓ Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- **X** Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.
- **X** Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

7/31

Region Automaton Properties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed automaton ${\cal A}$ the following holds:

 ℓ is reachable in $\mathcal{U}(\mathcal{A})$ if and only if ℓ is reachable in $\mathcal{R}(\mathcal{A}).$

For the **Proof**:

$$\langle \ell, \nu, \rangle \xrightarrow{\alpha} \langle \ell', \nu'_1 \rangle$$

 $\exists v_2' \bullet \langle \ell_1 v_2 \rangle \xrightarrow{\alpha} \langle \ell_1' v_2' \rangle$ Definition 4.21. [Bisimulation] An equivalence relation \sim on valuations is a (strong) bisimulation if and only if, whenever

 $u_1 \sim \nu_2 \text{ and } \langle \ell, \nu_1 \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu_1' \rangle$

then there exists ν'_2 with $\nu'_1 \sim \nu'_2$ and $\langle \ell, \nu_2 \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu'_2 \rangle$.

Lemma 4.26. [Bisimulation] \cong is a strong bisimulation.

- 13 - 2013-06-18 - Sdec -

13 - 2013-06-18 - Sdec -

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple — w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system U(A) — abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of A is preserved in U(A).
- ✓ Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- ✓ Lem. 4.32: location reachability of U(A) is preserved in $\mathcal{R}(A)$.
- **X** Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

9/31

The Number of Regionsmognitude of X
(number of elduards in X)Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal
constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then
 $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$
is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

$$(c_{1}(2(A))) \leq |L| \cdot (2c+2)^{|K|} \cdot (4c+3)^{\frac{4}{2}|K|} \cdot (Kl-1)$$

13 - 2013-06-18 - Sdec -

- Lemma 4.28 in particular tells us that each timed automaton (in our definition) has finitely many regions.
 (a flux R(A) is finite
- Note: the upper bound is a worst case, not an exact bound.

eg. if (x< cy, 4.28 still works with c=max {cx, cy}

11/31

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple — w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system U(A) — abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of A is preserved in U(A).
- ✓ Def. 4.29: region automaton R(A) equivalent configurations collapse into regions
- ✓ Lem. 4.32: location reachability of U(A) is preserved in $\mathcal{R}(A)$.
- ✓ Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Putting It All Together

Let $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ be a timed automaton, $\ell \in L$ a location.

- $\mathcal{R}(\mathcal{A})$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $Conf(\mathcal{R}(\mathcal{A}))$ is finite (by construction).
- It is decidable whether (C_{init} of $\mathcal{R}(\mathcal{A})$ is empty) or whether there exists a sequence

 $\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_n, [\nu_n] \rangle$

such that $\ell_n = \ell$ (reachability in graphs).

So we have

- 13 - 2013-06-18 - Sdec -

Theorem 4.33. [*Decidability*] The location reachability problem for timed automata is **decidable**.

13/31

The Constraint Reachability Problem

- Given: A timed automaton \mathcal{A} , one of its control locations ℓ , and a clock constraint φ .
- Question: Is a configuration $\langle \ell, \nu \rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

in the labelled transition system $\mathcal{T}(\mathcal{A})$ with $\nu \models \varphi$?

• Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

The Delay Operation

- Let $[\nu]$ be a clock region.
- We set

 $delay[\nu] = \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$

• Note: $delay[\nu]$ can be represented as a finite union of regions. For example, with our two-clock example we have

$$delay[x = y = 0] = [x = y = 0] \cup [0 < x = y < 1] \cup [x = y = 1] \cup [1 < x = y]$$
15/31

- 13 - 2013-06-18 - Sdec

Zones

(Presentation following [Fränzle, 2007])

16/31

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

 $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$

is an upper bound on the number of regions.

• In the desk lamp controller,

- 13 - 2013-06-18 - Szones -

wd*g **b**H regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's **actually** only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$.

So: seems there are even equivalence classes of undistinguishable regions.

 $(3,\infty)\rangle$

18/31

What is a Zone?

13 - 2013-06-18 - Szones -

More Examples: Zone or Not?

for some $e_1, \ldots, e_n \in E$.

13 - 2013-06-18 - Szon

 $21/_{31}$

Stocktaking: What's Missing?

Missing:

Szon

2013-06-18 -

- Algorithm to effectively compute $\text{Post}_e(\langle \ell, z \rangle)$ for given configuration $\langle \ell, z \rangle \in L \times \text{Zones}$ and edge $e \in E$.
- Decision procedure for whether configuration $\langle\ell',z'\rangle$ is subsumed by a given subset of $L\times$ Zones.

Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

• If z is given by a constraint $\varphi \in \Phi(X)$, then the zone component z' of $\operatorname{Post}_e(\ell, z) = \langle \ell', z' \rangle$ should also be a constraint from $\Phi(X)$. (Because sets of clock valuations are soo unhandily...)

Good news: the following operations can be carried out by manipulating φ .

• The elapse time operation:

$$\uparrow : \Phi(X) \to \Phi(X)$$

Given a constraint φ , the constraint $\uparrow(\varphi)$, or $\varphi\uparrow$ in postfix notation, is supposed to denote the set of clock valuations

$$\{\nu + t \mid \nu \models \varphi, t \in \mathsf{Time}\}$$

In other symbols: we want

$$\llbracket \uparrow (\varphi) \rrbracket = \llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \in \llbracket \varphi \rrbracket, t \in \mathsf{Time} \}.$$

To this end: remove all upper bounds $x \leq c \text{, } x < c \text{ from } \varphi$ and add diagonals.

24/31

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

• elapse time $\varphi \uparrow$ with

$$\llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \models \varphi, t \in \mathsf{Time} \}$$

• zone intersection $\varphi_1 \wedge \varphi_2$ with

$$\llbracket \varphi_1 \land \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}$$

• clock hiding $\exists x.\varphi$ with

 $\llbracket \exists x.\varphi \rrbracket = \{\nu \mid \text{there is } t \in \text{Time such that } \nu[x := t] \models \varphi\}$

• clock reset $\varphi[x := 0]$ with

$$[\![\varphi[x:=0]]\!] = [\![x=0 \land \exists \, x.\varphi]\!]$$

- 13 - 2013-06-18 - Szones -

13 - 2013-06-18 - Szones -

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

 $\operatorname{Post}_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$

where

13 - 2013-06-18 - Szones -

• $\varphi_1 = \varphi_0 \uparrow$

let time elapse starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable φ_0 valuations.

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: φ_3 are the reachable good valuations where e is enabled.

•
$$\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$$

reset clocks: φ_4 are all possible outcomes of taking e from φ_3

• $\varphi_5 = \varphi_4 \wedge I(\ell')$

intersect with invariant of ℓ' : φ_5 are the good outcomes of taking e from φ_3

Difference Bound Matrices

• Given a finite set of clocks X, a DBM over X is a mapping $M: (X \stackrel{\cdot}{\cup} \{x_0\} \times X \stackrel{\cdot}{\cup} \{x_0\}) \rightarrow (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$

• $M(x,y) = (\sim, c)$ encodes the conjunct $x - y \sim c$ (x and y can be x_0).

28/31

Difference Bound Matrices

• Given a finite set of clocks X, a **DBM** over X is a mapping

 $M: (X \stackrel{.}{\cup} \{x_0\} \times X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<,\le\} \times \mathbb{Z} \cup \{(<,\infty)\})$

- $M(x,y) = (\sim, c)$ encodes the conjunct $x y \sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \land N$, M[x := 0] such that
 - all three are again DBM,
 - $M \uparrow \text{ encodes } \varphi_1 \uparrow$,
 - $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
 - M[x := 0] encodes $\varphi_1[x := 0]$.
- And there is a canonical form of DBM canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).
- Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

- **Zone-based** reachability analysis usually is explicit wrt. discrete locations:
 - maintains a list of location/zone pairs or
 - maintains a list of location/DBM pairs
 - confined wrt. size of discrete state space
 - avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- **Region-based** analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
 - less dependent on size of discrete state space
 - exponential in number of clocks

29/31

References

- 13 - 2013-06-18 - main -

References

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme. Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). <u>Real-Time Systems</u> - Formal Specification and Automatic Verification. Cambridge University Press.