Real-Time Systems
 Lecture 13: Regions and Zones

2013-06-18

Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Started location reachability decidability (by region construction)

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What is a region? What is the region automaton of this TA?
- What's the time abstract system of a TA? Why did we consider this?
- What can you say about the complexity of Region-automaton based reachability analysis?
- What's a zone? In contrast to a region?
- Motivation for having zones?
- What's a DBM? Who needs to know DBMs?
- Content:
- Region automaton cont'd
- Reachability Problems for Extended Timed Automata
- Zones
- Difference Bound Matrices

The Location Reachability Problem Cont'd

The Region Automaton

Definition 4.29. [Region Autorhaton] The region automaton $\mathcal{R}(\mathcal{A})$ of the timed automaton \mathcal{A} is the labelled transition system

in $\mathcal{U}(\mathcal{A})$, and

- $C_{\text {ini }}=\left\{\left\langle\ell_{\text {ini }},\left[\nu_{\text {ini }}\right]\right\rangle\right\} \cap \operatorname{Conf}(\mathcal{R}(\mathcal{A}))$ with $\nu_{\text {ini }}(X)=\{0\}$.

Proposition. The transition relation of $\mathcal{R}(\mathcal{A})$ is well-defined, that is, independent of the choice of the representative ν of a region $[\nu]$.
Example: Region Automaton

$\mathcal{U}(\mathcal{A}):$
$\cdots \xrightarrow{\text { press }}\langle$ light, $[x=0]\rangle$
(s)
\langle bright, $[x=0]\rangle \stackrel{\text { press }}{\Longrightarrow} \ldots$
\langle bright, $[x=0.1]\rangle \stackrel{\text { press }}{\rightleftarrows} \cdots$
\langle bright, $[x=1.0]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots$
\Longrightarrow
\langle bright, $[x=3.0]\rangle \stackrel{\text { press }}{\Longrightarrow} \ldots$
\langle bright, $[x=3.001]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots \quad\{\nu \mid \nu(x)>3\}$

$$
\begin{aligned}
& \langle\text { off, }[x=0]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots \\
& \langle\text { off, }[x=2.9]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots \\
& \langle\text { off, }[x=3.0]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots \\
& \langle\text { off, }[x=3.001]\rangle \stackrel{\text { press }}{\Longrightarrow} \cdots
\end{aligned}
$$

Remark

Remark 4.30. That a configuration $\langle\ell,[\nu]\rangle$ is reachable in $\mathcal{R}(\mathcal{A})$ represents the fact, that all $\langle\ell, \nu\rangle$ are reachable.

IAW: in \mathcal{A}, we can observe ν when
location ℓ has just been entered.
The clock values reachable by staying/letting time pass in ℓ are not explicitly represented by the regions of $\mathcal{R}(\mathcal{A})$.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.
Approach: Constructive proof.
\checkmark Observe: clock constraints are simple

- w.l.o.g. assume constants $c \in \mathbb{N}_{0}$.
\checkmark Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ - abstracts from uncountably many delay transitions, still infinite-state.
\checkmark Lem. 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.
\checkmark Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ equivalent configurations collapse into regions
x Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.
x Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Region Automaton Properties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed automaton \mathcal{A} the following holds:
ℓ is reachable in $\mathcal{U}(\mathcal{A})$ if and only if ℓ is reachable in $\mathcal{R}(\mathcal{A})$.

For the Proof:

$$
\left\langle e_{1, \nu_{1}}\right\rangle \stackrel{\alpha}{\Rightarrow}\left\langle e_{1}^{\prime},_{1}^{\prime}\right\rangle
$$

Definition 4.21. [Bisimulation] An equivalence relation \sim on valuations is a (strong) bisimulation if and only if, whenever

$$
\nu_{1} \sim \nu_{2} \text { and }\left\langle\ell, \nu_{1}\right\rangle \stackrel{\alpha}{\Longrightarrow}\left\langle\ell^{\prime}, \nu_{1}^{\prime}\right\rangle
$$

then there exists ν_{2}^{\prime} with $\nu_{1}^{\prime} \sim \nu_{2}^{\prime}$ and $\left\langle\ell, \nu_{2}\right\rangle \xlongequal{\alpha}\left\langle\ell^{\prime}, \nu_{2}^{\prime}\right\rangle$.

refion eqdiratence

Lemma 4.26. [Bisimulation $] \cong$ is a strong bisimulation.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automat.
Approach: Constructive proof.
\checkmark Observe: clock constraints are simple

- w.l.o.g. assume constants $c \in \mathbb{N}_{0}$.
\checkmark Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ - abstracts from uncountable many delay transitions, still infinite-state.
\checkmark Lem. 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.
\checkmark Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ equivalent configurations collapse into regions
\checkmark Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.
x Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

The Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_{x} \in \mathbb{N}_{0}$ the maximal constant for each $x \in X$, and $c=\max \left\{c_{x} \mid x \in X\right\}$. Then

$$
(2 c+2)^{|X|} \cdot(4 c+3)^{\frac{1}{2}|X| \cdot(|X|-1)}
$$

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

$$
\rightarrow|\operatorname{couf}(R(A))| \leq|L| \cdot(2 c+2)^{|X|} \cdot(4 c+3)^{\frac{1}{2}|A| \cdot(X \mid-1)}
$$

- Lemma 4.28 in particular tells us that each timed automaton (in our definition) has finitely many regions.

$$
4 \text { thus } R(A) \text { is finite }
$$

- Note: the upper bound is a worst case, not an exact bound.

$$
\text { e.g. if } c_{x}<c_{y}, 4.28 \text { still wales coth } c=\max \left\{c_{x}, c_{y}\right\}
$$

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automat.
Approach: Constructive proof.
\checkmark Observe: clock constraints are simple

- w.l.o.g. assume constants $c \in \mathbb{N}_{0}$.
\checkmark Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ - abstracts from uncountable many delay transitions, still infinite-state.
\checkmark Lem. 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.
\checkmark Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ equivalent configurations collapse into regions
\checkmark Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.
\checkmark Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Putting It All Together

Let $\mathcal{A}=\left(L, B, X, I, E, \ell_{i n i}\right)$ be a timed automaton, $\ell \in L$ a location.

- $\mathcal{R}(\mathcal{A})$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $\operatorname{Conf}(\mathcal{R}(\mathcal{A}))$ is finite (by construction).
- It is decidable whether $\left(C_{\text {init }}\right.$ of $\mathcal{R}(\mathcal{A})$ is empty) or whether there exists a sequence

$$
\left\langle\ell_{i n i},\left[\nu_{i n i}\right]\right\rangle \xrightarrow[\rightarrow]{\alpha}_{R(\mathcal{A})}\left\langle\ell_{1},\left[\nu_{1}\right]\right\rangle \xrightarrow[\rightarrow]{\alpha}_{R(\mathcal{A})} \ldots \xrightarrow{\alpha}_{R(\mathcal{A})}\left\langle\ell_{n},\left[\nu_{n}\right]\right\rangle
$$

such that $\ell_{n}=\ell$ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

The Constraint Reachability Problem

- Given: A timed automaton \mathcal{A}, one of its control locations ℓ, and a clock constraint φ.
- Question: Is a configuration $\langle\ell, \nu\rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

$$
\left\langle\ell_{i n i}, \nu_{i n i}\right\rangle \xrightarrow{\lambda_{1}}\left\langle\ell_{1}, \nu_{1}\right\rangle \xrightarrow{\lambda_{2}}\left\langle\ell_{2}, \nu_{2}\right\rangle \xrightarrow{\lambda_{3}} \ldots \xrightarrow{\lambda_{n}}\left\langle\ell_{n}, \nu_{n}\right\rangle=\langle\ell, \nu\rangle
$$

in the labelled transition system $\mathcal{T}(\mathcal{A})$ with $\nu \models \varphi$?

- Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

- Let $[\nu]$ be a clock region.

- We set

The Delay Operation

- Let $[\nu]$ be a clock region.
- We set

$$
\operatorname{delay}[\nu]=\left\{\nu^{\prime}+t \mid \nu^{\prime} \cong \nu \text { and } t \in \text { Time }\right\} .
$$

- Note: delay $[\nu]$ can be represented as a finite union of regions.

For example, with our two-clock example we have
$\operatorname{delay}[x=y=0]=$

Zones

Lemma 4.28. Let X be a set of clocks, $c_{x} \in \mathbb{N}_{0}$ the maximal constant for each $x \in X$, and $c=\max \left\{c_{x} \mid x \in X\right\}$. Then

$$
(2 c+2)^{|X|} \cdot(4 c+3)^{\frac{1}{2}|X| \cdot(|X|-1)}
$$

is an upper bound on the number of regions.

- In the desk lamp controller,

many latll regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's actually only important whether $\nu(x) . \in[0,3]$ or $\nu(x) \in(3, \infty)$.
So: seems there are even equivalence classes of undistinguishable regions.

region automaton

- In $\mathcal{R}(\mathcal{L})$ we have transitions:

- Which seems to be a complicated way to write just:

$$
\langle\overparen{\text { light }},\{0\}\rangle \xrightarrow{\text { press? }}\langle\overparen{\text { oright }},[0,3]\rangle
$$

- Can't we constructively abstract \mathcal{L} to:

What is a Zone?

Definition. A (clock) zone is a set $z \subseteq(X \rightarrow$ Time) of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

$$
\nu \in z \text { if and only if } \nu \models \varphi
$$

Example:
is a clock zone by

$$
\varphi=(x \leqslant 2) \wedge(x>1) \wedge(y \geq 1) \wedge(y<2) \wedge(x-y \geqslant 0)
$$

Definition. A (clock) zone is a set $z \subseteq \overbrace{(X \rightarrow \text { Time })}^{\sqrt{*}}$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

$$
\nu \in z \text { if and only if } \nu \models \varphi \text {. }
$$

Example:
is a clock zone by
(for simetinity $c \in N_{0}$)

$$
\varphi=(x \leq 2) \wedge(x>1) \wedge(y \geq 1) \wedge(y<2) \wedge(x-y \geq 0)
$$

- Note: Each clock constraint φ is a symbolic representation of a zone.
- But: There's no one-on-one correspondence between clock constraints and zones. The zone $z=\emptyset$ corresponds to $(x>1 \wedge x<1),(x>2 \wedge x<2), \ldots$

> YES by
$(x \geqslant 1) \wedge(y \geqslant 1) \wedge(x-y \geqslant 0) \wedge(x-y \leqslant 2)$

YES by

$$
(x>1) \text {, }(x \leq 2) \wedge(y=0)
$$

Zone-based Reachability

Given:

Assume a function

such that $\operatorname{Post}_{e}(\langle\ell, z\rangle)$ yields the configuration $\left\langle\ell^{\prime}, z^{\prime}\right\rangle$ such that

- zone z^{\prime} denotes exactly those clock valuations ν^{\prime}
- which are reachable from a configuration $\langle\ell, \nu\rangle, \nu \in z$,
- by taking edge $e=\left(\ell, \alpha, \varphi, Y, \ell^{\prime}\right) \in E$.
$\overbrace{\text { firstly delving }}$

Zone-based Reachability

Given:

Assume a function

such that $\operatorname{Post}_{e}(\langle\ell, z\rangle)$ yields the configuration $\left\langle\ell^{\prime}, z^{\prime}\right\rangle$ such that

- zone z^{\prime} denotes exactly those clock valuations ν^{\prime}
- which are reachable from a configuration $\langle\ell, \nu\rangle, \nu \in z$,
- bytaking edge $e=\left(\ell, \alpha, \varphi, Y, \ell^{\prime}\right) \in E$.

Then $\ell \in L$ is reachable in \mathcal{A} if and only if

$$
\operatorname{Post}_{e_{n}}\left(\ldots\left(\operatorname{Post}_{e_{1}}\left(\left\langle\ell_{i n i}, z_{i n i}\right\rangle\right) \ldots\right)\right)
$$

for some $e_{1}, \ldots, e_{n} \in E$.

Zone-based Reachability: In Other Words

Given:
 and initial configuration \qquad $\{0\}\rangle$

Wanted: A procedure to compute the set

```
```

- <<light,,{0}\rangle

```
```

- <<light,,{0}\rangle
- \(oright, , [0, 3]\rangle
- \(oright, , [0, 3]\rangle
- \langleOff), [0, \infty)\rangle

```
```

- \langleOff), [0, \infty)\rangle

```
```


Stocktaking: What's Missing?

```
-Set R:= {\langle\ell (ini},\mp@subsup{z}{ini}{}\rangle}\subsetL\times\mathrm{ Zones
- Repeat
    - pick
            - a pair }\langle\ell,z\rangle\mathrm{ from R and
            - an edge e }\inE\mathrm{ with source }
            such that \mp@subsup{\operatorname{Post}}{e}{(\langle\ell,z\rangle) is not already subsumed by R}
            - add Poste}(\langle\ell,z\rangle) to 
until no more such }\langle\ell,z\rangle\inR\mathrm{ and }e\inE\mathrm{ are found.
```


Missing:

- Algorithm to effectively compute $\operatorname{Post}_{e}(\langle\ell, z\rangle)$ for given configuration $\langle\ell, z\rangle \in L \times$ Zones and edge $e \in E$.
- Decision procedure for whether configuration $\left\langle\ell^{\prime}, z^{\prime}\right\rangle$ is subsumed by a given subset of $L \times$ Zones.

Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_{x} into account (not in lecture).

What is a Good "Post"?

- If z is given by a constraint $\varphi \in \Phi(X)$, then the zone component z^{\prime} of $\operatorname{Post}_{e}(\ell, z)=\left\langle\ell^{\prime}, z^{\prime}\right\rangle$ should also be a constraint from $\Phi(X)$.
(Because sets of clock valuations are soo unhandily...)

Good news: the following operations can be carried out by manipulating φ.

- The elapse time operation:

$$
\uparrow: \Phi(X) \rightarrow \Phi(X)
$$

Given a constraint φ, the constraint $\uparrow(\varphi)$, or $\varphi \uparrow$ in postfix notation, is supposed to denote the set of clock valuations

$$
\{\nu+t \mid \nu \models \varphi, t \in \mathrm{Time}\} .
$$

In other symbols: we want

$$
\llbracket \uparrow(\varphi) \rrbracket=\llbracket \varphi \uparrow \rrbracket=\{\nu+t \mid \nu \in \llbracket \varphi \rrbracket, t \in \text { Time }\} .
$$

To this end: remove all upper bounds $x \leq c, x<c$ from φ and add diagonals.

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ.

- elapse time $\varphi \uparrow$ with

$$
\llbracket \varphi \uparrow \rrbracket=\{\nu+t \mid \nu \models \varphi, t \in \mathrm{Time}\}
$$

- zone intersection $\varphi_{1} \wedge \varphi_{2}$ with

$$
\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket=\left\{\nu \mid \nu \models \varphi_{1} \text { and } \nu \models \varphi_{2}\right\}
$$

- clock hiding $\exists x . \varphi$ with

$$
\llbracket \exists x . \varphi \rrbracket=\{\nu \mid \text { there is } t \in \text { Time such that } \nu[x:=t] \models \varphi\}
$$

- clock reset $\varphi[x:=0]$ with

$$
\llbracket \varphi[x:=0] \rrbracket=\llbracket x=0 \wedge \exists x . \varphi \rrbracket
$$

...because given $\langle\ell, z\rangle=\left\langle\ell, \varphi_{0}\right\rangle$ and $e=\left(\ell, \alpha, \varphi,\left\{y_{1}, \ldots, y_{n}\right\}, \ell^{\prime}\right) \in E$ we have

$$
\operatorname{Post}_{e}(\langle\ell, z\rangle)=\left\langle\ell^{\prime}, \varphi_{5}\right\rangle
$$

where

- $\varphi_{1}=\varphi_{0} \uparrow$
let time elapse starting from $\varphi_{0}: \varphi_{1}$ represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.
- $\varphi_{2}=\varphi_{1} \wedge I(\ell)$
intersect with invariant of $\ell: \varphi_{2}$ represents the reachable "good" valuations.
- $\varphi_{3}=\varphi_{2} \wedge \varphi$ intersect with guard: φ_{3} are the reachable "good" valuations where e is enabled.
- $\varphi_{4}=\varphi_{3}\left[y_{1}:=0\right] \ldots\left[y_{n}:=0\right]$ reset clocks: φ_{4} are all possible outcomes of taking e from φ_{3}
- $\varphi_{5}=\varphi_{4} \wedge I\left(\ell^{\prime}\right)$
intersect with invariant of $\ell^{\prime}: \varphi_{5}$ are the "good" outcomes of taking e from φ_{3}

Example

- $\varphi_{1}=\varphi_{0} \uparrow$
let time elapse.

- $\varphi_{2}=\varphi_{1} \wedge I(\ell) \quad$ intersect with invariant of ℓ
- $\varphi_{3}=\varphi_{2} \wedge \varphi \quad$ intersect with guard
- $\varphi_{4}=\varphi_{3}\left[y_{1}:=0\right] \ldots\left[y_{n}:=0\right] \quad$ reset clocks
- $\varphi_{5}=\varphi_{4} \wedge I\left(\ell^{\prime}\right) \quad$ intersect with invariant of ℓ^{\prime}

Difference Bound Matrices

disjoint union

- Given a finite set of clocks X, a DBM over X is a mapping

$$
M:\left(X \dot{\cup}\left\{x_{0}\right\} \times X \dot{\cup}\left\{x_{0}\right\}\right) \rightarrow(\{<, \leq\} \times \mathbb{Z} \cup\{(<, \infty)\})
$$

- $M(x, y)=(\sim, c)$ encodes the conjunct $x-y \sim c\left(x\right.$ and y can be $\left.x_{0}\right)$.

Difference Bound Matrices

- Given a finite set of clocks X, a DBM over X is a mapping

$$
M:\left(X \dot{\cup}\left\{x_{0}\right\} \times X \dot{\cup}\left\{x_{0}\right\}\right) \rightarrow(\{<, \leq\} \times \mathbb{Z} \cup\{(<, \infty)\})
$$

- $M(x, y)=(\sim, c)$ encodes the conjunct $x-y \sim c\left(x\right.$ and y can be $\left.x_{0}\right)$.
- If M and N are DBM encoding φ_{1} and φ_{2} (representing zones z_{1} and z_{2}), then we can efficiently compute $M \uparrow, M \wedge N, M[x:=0]$ such that
- all three are again DBM,
- $M \uparrow$ encodes $\varphi_{1} \uparrow$,
- $M \wedge N$ encodes $\varphi_{1} \wedge \varphi_{2}$, and
- $M[x:=0]$ encodes $\varphi_{1}[x:=0]$.
- And there is a canonical form of DBM - canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).
- Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

Pros and cons

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
- maintains a list of location/zone pairs or
- maintains a list of location/DBM pairs
- confined wrt. size of discrete state space
- avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- Region-based analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
- less dependent on size of discrete state space
- exponential in number of clocks

References

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme.
Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.
[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

