Real-Time Systems

Lecture 14: Extended Timed Automata

2013-06-25

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Decidability of the location reachability problem:
 - region automaton
 - zones

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - By what are TA extended? Why is that useful?
 - What's an urgent/committed location? What's the difference?
 - What's an urgent channel?
 - Where has the notion of "input action" and "output action" correspondences in the formal semantics?

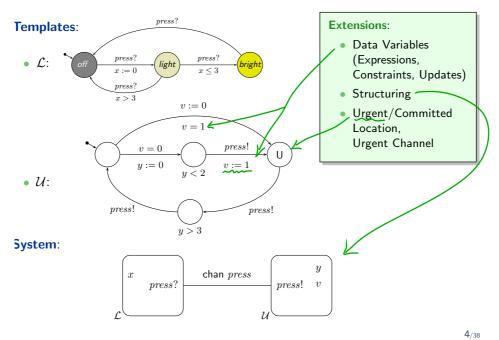
• Content:

- Extended TA:
 - Data-Variables
 - Structuring Facilities
 - Restriction of Non-Determinism
- The Logic of Uppaal

Extended Timed Automata

3/38

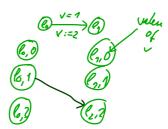
Example (Partly Already Seen in Uppaal Demo)



Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 - E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straighforward:
 - If we have control locations $L_0 = \{\ell_1, \dots, \ell_n\}$,
 - and want to model, e.g., the valve range as a variable v with $\mathcal{D}(v) = \{0, \mathcal{A}, 2\}$,
 - then just use $L = L_0 \times \mathcal{D}(v)$ as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the $\xrightarrow{\lambda}$.

 ${\cal L}$ is still finite, so we still have a proper TA.



5/38

Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 - E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straighforward:
 - If we have control locations $L_0 = \{\ell_1, \dots, \ell_n\}$,
 - and want to model, e.g., the valve range as a variable v with $\mathcal{D}(v) = \{0,\dots,2\}$,
 - then just use $L = L_0 \times \mathcal{D}(v)$ as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the $\xrightarrow{\lambda}$.

L is still finite, so we still have a proper TA.

- But: writing $\xrightarrow{\lambda}$ is tedious.
- So: have variables as "first class citizens" and let compilers do the work.
- Interestingly, many examples in the literature live without variables: the
 more abstract the model is, i.e., the fewer information it keeps track of
 (e.g. in data variables), the easier the verification task.

Data Variables and Expressions

4inti V (f (4, ..., 4/2) VEV

- Let $(v, w \in) V$ be a set of (integer) variables. $(\psi_{int} \in) \Psi(V)$: integer expressions over V using func. symb. $+, -, \ldots$ $(\varphi_{int} \in) \Phi(V)$: integer (or data) constraints over Vusing integer expressions, predicate symbols $=, <, \leq, \ldots$, and boolean logical connectives. (incl. マ, フ, ヘ, ⇒, ⇔, v, ...)
- Let $(x, y \in) X$ be a set of clocks. $(\varphi \in) \Phi(X, V)$: (extended) guards, defined by

$$\varphi ::= \varphi_{clk} \mid \varphi_{int} \mid \varphi_1 \wedge \varphi_2$$

where $\varphi_{clk} \in \Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int} \in \Phi(V)$ an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(b)
$$x < y \lor v > 2$$
, $(\sqrt[4]{y})$

(c)
$$\underbrace{v < 1 \lor v > 2}_{\boldsymbol{\epsilon} \, \boldsymbol{\psi}(\boldsymbol{\gamma})}$$

Modification or Reset Operation

• New: a modification or reset (operation) is

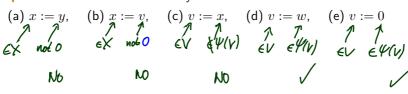
$$x := 0, \quad x \in X,$$

or

$$v := \psi_{int}, \quad v \in V, \quad \psi_{int} \in \Psi(V).$$

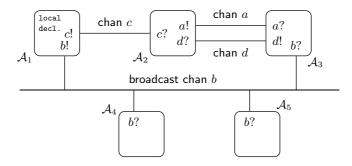
- By R(X, V) we denote the set of all resets.
- By \vec{r} we denote a finite list $\langle r_1, \ldots, r_n \rangle$, $n \in \mathbb{N}_0$, of reset operations $r_i \in R(X, V)$; $\langle \rangle$ is the empty list.
- By $R(X,V)^*$ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?



Structuring Facilities

global decl.: clocks, variables, channels, constants



- Global declarations of of clocks, data variables, channels, and constants.
- ullet Binary and broadcast channels: chan c and broadcast chan b.
- Templates of timed automata.
- Instantiation of templates (instances are called process).
- System definition: list of processes.

8/38

Restricting Non-determinism

• Urgent locations — enforce local immediate progress.

• Committed locations — enforce atomic immediate progress.

• **Urgent channels** — enforce cooperative immediate progress.

urgent chan press;

Urgent Locations: Only an Abbreviation...

Replace



where z is a fresh clock:

- reset z on all in-going egdes,
- add z = 0 to invariant.

N=3

N=3

Number of wzent loc. is 20

at least one V-loc. per automatos

Question: How many fresh clocks do we need in the worst case for a network of N extended timed automata?

10/38

Extended Timed Automata

-so still $I \leftarrow \phi(x)$

Definition 4.39. An extended timed automaton is a structure

$$\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$$

where L, B, X, I, ℓ_{ini} are as in Def. 4.3, except that location invariants in I are downward closed, and where

- $C \subseteq L$: committed locations,
- $U \subseteq B$: urgent channels,
- ullet V: a set of data variables,
- $E\subseteq L\times B_{!?}\times \Phi(X,V)\times R(X,V)^*\times L$: a set of directed edges such that . '

$$(\ell,\alpha,\varphi,\vec{r},\vec{\ell'}) \in E \wedge \mathsf{chan}(\alpha) \in U \implies \varphi = \mathit{true}.$$

Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

9 is d.c.

iff

∀ν: X→Time

ν=φ

(∀t∈Time

ν-t=ψ)

γ

• X<3 is d.c.

• x>3 is not d.c.

Operational Semantics of Networks

Definition 4.40. Let $\mathcal{A}_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i}),$ $1 \le i \le n$, be extended timed automata with pairwise disjoint sets

The operational semantics of $\mathcal{C}(\mathcal{A}_{e,1},\ldots,\mathcal{A}_{e,n})$ (closed!) is the labelled transition system

$$\begin{split} \mathcal{T}_e(\mathcal{C}(\mathcal{A}_{e,1},\dots,\mathcal{A}_{e,n})) \\ &= (\mathit{Conf},\mathsf{Time} \cup \{\tau\}, \{ \xrightarrow{\lambda} \mid \lambda \in \mathsf{Time} \cup \{\tau\}\}, C_{ini}) \end{split}$$

- $X = \bigcup_{i=1}^n X_i$ and $V = \bigcup_{i=1}^n V_i$, $Conf = \{\langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \to \mathsf{Time}, \nu \models \bigwedge_{k=1}^n I_k(\ell_k) \}$
- $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap Conf$,

and the transition relation consists of transitions of the following three types.

12/38

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.

$$\Psi:=v\mid f(Y_n,...,Y_n)$$
assume $F(f):\mathbb{Z}^n\to\mathbb{Z}$

$$I(v,v) = v(v) \in \mathcal{D}(V)$$

$$I(f(Y_1,...,Y_n),v) = I(f) (I(Y_1,v),-,I(Y_n,v))$$

$$I(v+w, \{v+3,u+2v\})$$

$$=I(+) (I(v,v), I(v,v)) = f(v(v),v(v))$$

$$= f(3,24) = 27$$

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.
- Extended timeshift $\nu + t$, $t \in \text{Time}$, applies to clocks only:
 - $\underbrace{(\nu+t)}(x) := \nu(x) + t, \ x \in X,$ $\underbrace{(\nu+t)(v)} := \nu(v), \ v \in V.$
- Effect of modification $r \in R(X,V)$ on ν , denoted by $\nu[r]$:

$$\begin{split} \nu[x := \mathbf{0}](a) := \begin{cases} 0, \text{ if } a = x, \\ \nu(a), \text{ otherwise} \end{cases} \\ \nu[v := \psi_{int}](a) := \begin{cases} \nu(\psi_{int}), \text{ if } a = v, \\ \nu(a), \text{ otherwise} \end{cases} \end{split}$$

• We set $\nu[\langle r_1, \dots, r_n \rangle] := \nu[r_1] \dots [r_n] = (((\nu[r_1])[r_2]) \dots)[r_n].$

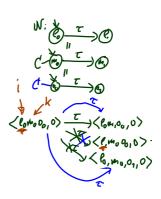
13/38

Operational Semantics of Networks: Internal Transitions

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ such that

 - such that $\begin{array}{c} \text{v} \\ \text{o there is a τ-edge } (\ell_i,\tau,\varphi,\vec{r},\ell_i') \in E_i, \\ \text{o $\nu \models \varphi$,} \\ \text{o $\vec{\ell}' = \vec{\ell}[\ell_i := \ell_i']$,} \\ \text{o $\nu' = \nu[\vec{r}]$,} \end{array}$

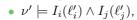
 - $\nu' \models I_i(\ell'_i)$,
- $\nu' \models I_i(\ell_i')$, $\bullet \overbrace{(\clubsuit)} \text{ if } \ell_k \in C_k \text{ for some } k \in \{1,\dots,n\} \text{ then } \ell_i \in C_i.$



Operational Semantics of Networks: Synchronisation Transitions

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ such that
 - there are edges $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell_i') \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell_i') \in E_j$,
 - $\nu \models \varphi_i \land \varphi_j$,

 - $\vec{\ell}' = \vec{\ell}[\ell_i := \ell'_i][\ell_j := \ell'_j],$ $\nu' = \nu[\vec{r_i}][\vec{r_j}], \qquad \text{``sender updates are applied first''} \qquad \frac{a.'}{\nu=2} \rightarrow \nu'$ $\nu' = \nu[\vec{r_i}][\vec{r_j}], \qquad \text{``sender updates are applied first''} \qquad \frac{a.'}{\nu=2} \rightarrow \nu'$



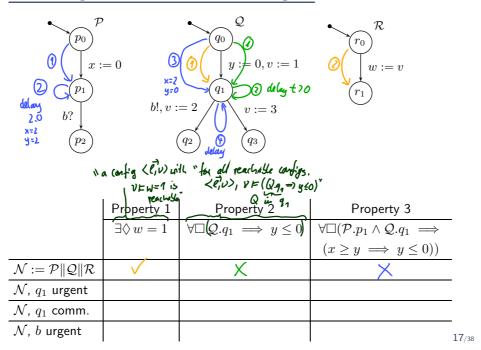
• (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

15/38

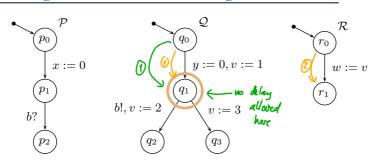
Operational Semantics of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
 - $\nu + t \models \bigwedge_{k=1}^{n} I_k(\ell_k)$,
 - () there are no $i,j\in\{1,\ldots,n\}$ and $b\in U$ with $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell_i') \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell_j') \in E_j$,
 - (\clubsuit) there is no $i \in \{1, \ldots, n\}$ such that $\ell_i \in C_i$.

Restricting Non-determinism: Example



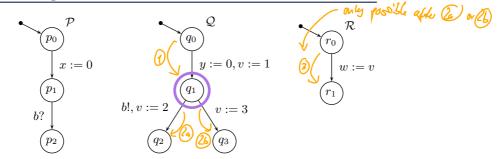
Restricting Non-determinism: Urgent Location



	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	
			$(x \ge y \implies y \le 0))$
\mathcal{N}	V	X	X
\mathcal{N} , q_1 urgent	V	✓	✓
\mathcal{N} , q_1 comm.			
\mathcal{N} , b urgent			

18/38

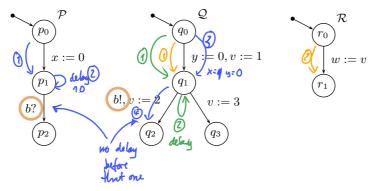
Restricting Non-determinism: Committed Location



	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies (x \ge y \implies y \le 0))$
			$(x \ge y \implies y \le 0))$
\mathcal{N}	V	X	X
\mathcal{N} , q_1 urgent	V	✓	✓
\mathcal{N} , q_1 comm.	X	✓	✓
\mathcal{N} , b urgent			

19/38

Restricting Non-determinism: Urgent Channel



	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$
			$(x \ge y \implies y \le 0))$
\mathcal{N}	V	X	×
\mathcal{N} , q_1 urgent	V	V	✓
\mathcal{N} , q_1 comm.	X	✓	✓
\mathcal{N} , b urgent	V	X	✓

20/38

Extended vs. Pure Timed Automata

21/38

Extended vs. Pure Timed Automata

$$\begin{split} \mathcal{A}_e &= (L, C, B, U, X, V, I, E, \ell_{ini}) \\ (\ell, \alpha, \varphi, \vec{r}, \ell') \in L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L \\ \text{vs.} \\ \mathcal{A} &= (L, B, X, I, E, \ell_{ini}) \\ (\ell, \alpha, \varphi, Y, \ell') \in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L \end{split}$$

- ullet \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
 - $\bullet \ \ C=\emptyset \text{,}$
 - $U = \emptyset$,
 - $V = \emptyset$,
 - for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.
 - $I(\ell), \varphi \in \Phi(X)$ is then a consequence of $V = \emptyset$.

Operational Semantics of Extended TA

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$$

and

$$\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n),$$

where $\{b_1, \ldots, b_m\} = \bigcup_{i=1}^n B_i$, coincide, i.e.

$$\mathcal{T}_e(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)) = \mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n)).$$

23/38

Reachability Problems for Extended Timed Automata

Recall

Theorem 4.33. [Location Reachability] The location reachability problem for pure timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for **pure** timed automata is **decidable**.

• And what about tea `Wextended timed automata?

25/38

References

_

eferences

Iderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

38/38