Real-Time Systems

Lecture 15: The Universality Problem for TBA

2013-07-02

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• Timed Words and Languages [Alur and Dill, 1994]

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What's a TBA and what's the difference to (extended) TA?
 - What's undecidable for timed (Büchi) automata?
 - What's the idea of the proof?

• Content:

- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
- The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
- Why this is unfortunate.
- Timed regular languages are not everything.

- 15 - 2013-07-02 - main -

Timed Büchi Automata

[Alur and Dill, 1994]

3/30

Recall: Timed Languages

Definition. A time sequence $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}^+_0$, satisfying the following constraints:

- (i) Monotonicity: τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \ge 1$.
- (ii) Progress: For every $t \in \mathbb{R}^+_0$, there is some $i \ge 1$ such that $\tau_i > t$.

Definition. A timed word over an alphabet Σ is a pair (σ,τ) where

- $\sigma = \sigma_1, \sigma_2, \dots \in \Sigma^{\omega}$ is an infinite word over Σ , and
- τ is a time sequence.

- 15 - 2013-07-02 - Stba -

Definition. A timed language over an alphabet Σ is a set of timed words over $\Sigma.$

Recall:

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

 $\delta ::= x \le c \mid c \le x \mid \neg \delta \mid \delta_1 \land \delta_2$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) ${\mathcal A}$ is a tuple $(\Sigma,S,S_0,X,E,F),$ where

• Σ is an alphabet,

- 15 - 2013-07-02 - Stba

- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.
- An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.
- $F \subseteq S$ is a set of accepting states.

Example: TBA

$$\mathcal{A} = (\Sigma, S, S_0, X, E, F) \ (s, s', a, \lambda, \delta) \in E$$

7/30

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an infinite sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\tau_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}^+_0$, satisfying the following requirements:

• Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.

• Consecution: for all
$$i \ge 1$$
, there is an edge in E of the form
 $(s_{i-1}, s_i, \sigma_i) \lambda_i, \delta_i)$ such that delay between \mathcal{I}_{j-1} and \mathcal{I}_j :
• $(\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and
• $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0].$
time shift (as before)

- 15 - 2013-07-02 - Stba -

- 15 - 2013-07-02 - Stba -

Example: TBA

$$\mathcal{A} = (\Sigma, S, S_0, X, E, F) \ (s, s', a, \lambda, \delta) \in E$$

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\tau_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}^+_0$, satisfying the following requirements:

- Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- Consecution: for all $i \ge 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

The set $inf(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \ge 0$.

Definition. A run $r = (\bar{s}, \bar{\nu})$ of a TBA over timed word (σ, τ) is called (an) accepting (run) if and only if $inf(r) \cap F \neq \emptyset$.

Example: (Accepting) Runs

$$\begin{split} r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\tau_3} \dots \text{ initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \text{ s.t.} \\ (\nu_{i-1} + (\tau_i - \tau_{i-1})) \models \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1})) [\lambda_i := 0]. \text{ Accepting iff } \inf(r) \cap F \neq \emptyset. \end{split}$$

$$s_1$$
 b s_0 a $x := 0$ s_2 $b, x < 2$ s_3 $a, x := 0$

Timed word: $(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots$

- Can we construct any run? Is it accepting? $\langle s_0, 0 \rangle \xrightarrow{q}{1} \langle s_2, 0 \rangle \xrightarrow{b}{2} \langle s_3, 1 \rangle \xrightarrow{q}{3} \langle s_2, 0 \rangle \xrightarrow{b}{4} \langle s_3, 1 \rangle \cdots$ $inf(t) = \{s_2, s_3\}$ $inf(t) = \{s_2, s_3\}$ $inf(t) = \{s_2, s_3\}$
- Can we construct a non-run (get stuck)? NO
- Can we construct a (non-)accepting run?

(': < 50,0) - + < 51,17 + < 50,27 + < 51,37 "

15 - 2013-07-02 - Stba -

inf(s)= {so, s, }

9/30

The Language of a TBA

Definition. For a TBA $\mathcal A,$ the language $L(\mathcal A)$ of timed words it accepts is defined to be the set \mathcal{V}

 $\{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$ For short: $L(\mathcal{A})$ is the language of \mathcal{A} .

Definition. A timed language L is a **timed regular language** if and only if $L = L(\mathcal{A})$ for some TBA \mathcal{A} .

0

Question: Is L_{crt} timed regular or not?

 $L(\mathcal{A}) = \{(\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau) \}.$

Claim:

$$L(\mathcal{A}) = L_{crt} \ (= \{((ab)^{\omega}, \tau) \mid \exists i \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2)\})$$

• Last $\in L(\mathcal{A})$: pick some $(\sigma_i \tau) \in Last.$ Construct on accepting run of \mathcal{A} .
• $L(\mathcal{A}) \le L_{crt}$: pick some $(\sigma_i \tau) \in L(\mathcal{A})$. Then there is an accepting run (s_i, τ) .

- 15 - 2013-07-02 - Stba -

11/30

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

- **Given:** A TBA \mathcal{A} over alphabet Σ .
- Question: Does A accept all timed words over Σ?
 In other words: Is L(A) = {(σ, τ) | σ ∈ Σ^ω, τ time sequence}.

13/30

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does A accept all timed words over Σ ?
 - In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1 -hard.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let B be a Büchi Automaton over Σ. complement in Σ^ω
 B is universal if and only if L(B) = Ø.
 - \mathcal{B}' such that $L(\mathcal{B}') = \overline{L(\mathcal{B})}$ is effectively computable.
 - Language emptyness is decidable for Büchi Automata.

 \ldots which is the case if and only if M doesn't have a recurring computation.

14/30

Once Again: Two Counter Machines (Different Flavour)

- 1: inc D; joto 2 e.g. 2: inc (1; goto 1,3 3: dec D; if (D=0) goto 1 ese goto 4 e.g. A two-counter machine M
 - has two **counters** C, D and
- a finite program consisting of n instructions. 4: inc D; goto 1,2
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d \rangle$: program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.
- A computation of M is an infinite consecutive sequence

 $\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$. <1,0,0>,<2,0,1>,<3,1,1>,...

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.

• Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.

(In particular s.t. $L_{undec} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.
- We represent a configuration $\langle i,c,d\rangle$ of M by the sequence

$$b_i \underbrace{a_1 \dots a_1}_{c \text{ times}} \underbrace{a_2 \dots a_2}_{d \text{ times}} = b_1 a_1^c a_2^d$$

15 - 2013-07-02 - Suniv

16/30

Step 1: The Language of Recurring Computations

- 15 - 2013-07-02 - Suniv

17/30

Wanted: A TBA \mathcal{A} such that

$$L(\mathcal{A}) = \overline{L_{undec}},$$

i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2}$
- ⟨i₁, c₁, d₁⟩, ⟨i₂, c₂, d₂⟩, ...
 is a recurring computation of M.
- the time of b_{i_j} is j,

15 - 2013-07-02 - Suniv

• if $c_{j+1} = c_j$ (= $c_j + 1$, = $c_j - 1$): ...

18/30

Step 2: Construct "Observer" for $\overline{L_{undec}}$

Wanted: A TBA \mathcal{A} such that

$$L(\mathcal{A}) = \overline{L_{undec}},$$

i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

- (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in j, j + 1[$.
- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.
- (iii) The timed word is not recurring, i.e. it has only finitely many b_{fl}
- (iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_j on the configuration encoded in [j, j+1[.

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{init} \cup \mathcal{A}_{recur} \cup igcup_{1 \leq i \leq n} \mathcal{A}_i$$

Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.

[Alur and Dill, 1994]: "It is easy to construct such a timed automaton."

19/30

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $\oint \le t < 1$ doesn't encode (1, 0, 0).

• It accepts

 $\{(\sigma_j,\tau_j)_{j\in\mathbb{N}_0}\mid (\sigma_0\neq b_1)\vee (\tau_0\neq 0)\vee (\tau_1\neq 1)\}.$

- 15 - 2013-07-02 - Suniv -

- 15 - 2013-07-02 - Suniv

Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i .

• \mathcal{A}_{recur} accepts words with only finitely many b_i .

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j + 1].

Example: assume instruction 7 is: Increment counter D and jump non-deterministically to instruction 3 or 5. Once again: stepwise. $\mathcal{A}_{\mathcal{I}}$ is $\mathcal{A}_{\mathcal{I}}^1 \cup \cdots \cup \mathcal{A}_{\mathcal{I}}^6$. j + 62

• \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."

• \mathcal{A}_7^2 is

•
$$\mathcal{A}_7$$
 is
*
 ℓ_0
 b_7
 ℓ_1
 $x < 1$
 ℓ_2
 $x \neq 1$
 ℓ_2
 χ_2
 χ_2

• $\mathcal{A}_7^4, \ldots, \mathcal{A}_7^6$ accept words with missing increment of D.

 ℓ_2

15 - 2013-07-02 - Suniv

Aha, And...?

- 15 - 2013-07-02 - Sjaund -

23/30

Consequences: Language Inclusion

- Given: Two TBAs \mathcal{A}_1 and \mathcal{A}_2 over alphabet B.
- Question: Is $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \mathcal{A}_2 and model the design as \mathcal{A}_1 .
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
- If language inclusion was decidable, then we could use it to decide universality of ${\cal A}$ by checking

$$\mathcal{L}(\mathcal{A}_{univ}) \subseteq \mathcal{L}(\mathcal{A})$$

where $\mathcal{A}_{\mathit{univ}}$ is any universal TBA (which is easy to construct).

- Given: A timed regular language W over B (that is, there is a TBA A such that L(A) = W).
- Question: Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \mathcal{A}_2 and model the design as \mathcal{A}_1 .
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check

$$L(\mathcal{A}_1) \cap L(\mathcal{A}_3) = \emptyset,$$

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptyness problem for Büchi automata is decidable.
 - (Proof by construction of region automaton [Alur and Dill, 1994].)

25/30

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA A such that L(A) = W).
- Question: Is \overline{W} timed regular?
- If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π_1^1 -hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA \mathcal{A} :

$$\mathcal{L}(\mathcal{A}) = \{ (a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \; \exists j > i : (t_j = t_i + 1) \}$$

Complement language:

$$\overline{\mathcal{L}(\mathcal{A})} = \{ (a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1 \}.$$

Beyond Timed Regular

15 - 2013-07-02 - Sbeyond -

27/30

Beyond Timed Regular

With clock constraints of the form

$$x + y \le x' + y'$$

we can describe timed languages which are not timed regular.

- In other words:
 There are strictly timed languages than timed regular languages.
 - There exists timed languages \mathfrak{B} such that there exists no \mathcal{A} with $L(\mathcal{A}) = \mathfrak{B}$.

References

29/30

References

- [Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235.
- [Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems* - *Formal Specification and Automatic Verification*. Cambridge University Press.