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Contents & Goals

Last Lecture:

• Timed Words and Languages [Alur and Dill, 1994]

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a TBA and what’s the difference to (extended) TA?

• What’s undecidable for timed (Büchi) automata?

• What’s the idea of the proof?

• Content:

• Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].

• The Universality Problem is undecidable for TBA [Alur and Dill, 1994]

• Why this is unfortunate.

• Timed regular languages are not everything.
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Timed Büchi Automata

[Alur andDill , 1994]
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Recall : Timed Languages

Definition. A time sequence τ = τ1, τ2, . . . is an infinite sequence of
time values τi ∈ R+

0 , satisfying the following constraints:

(i) Monotonicity:
τ increases strictly monotonically, i.e. τi < τi+1 for all i ≥ 1.

(ii) Progress: For every t ∈ R+

0 , there is some i ≥ 1 such that τi > t.

Definition. A timed word over an alphabet Σ is a pair (σ, τ) where

• σ = σ1, σ2, · · · ∈ Σω is an infinite word over Σ, and

• τ is a time sequence.

Definition. A timed language over an alphabet Σ is a set of timed
words over Σ.

–
1
5

–
2
0
1
3
-0

7
-0

2
–

S
tb

a
–

4/30



Recall :

Example: Timed Language
Timed word over alphabet Σ: a pair (σ, τ) where
• σ = σ1, σ2, . . . is an infinite word over Σ, and

• τ is a time sequence (strictly (!) monotonic, non-Zeno).

Lcrt = {((ab)ω, τ) | ∃ i ∀ j ≥ i : (τ2j < τ2j−1 + 2)}
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Timed Büchi Automata

Definition. The set Φ(X) of clock constraints over X is defined
inductively by

δ ::= x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2

where x ∈ X and c ∈ Q is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple
(Σ, S, S0, X, E, F ), where

• Σ is an alphabet,

• S is a finite set of states, S0 ⊆ S is a set of start states,

• X is a finite set of clocks, and

• E ⊆ S × S × Σ × 2X × Φ(X) gives the set of transitions.

An edge (s, s′, a, λ, δ) represents a transition from state s to state
s′ on input symbol a. The set λ ⊆ X gives the clocks to be reset
with this transition, and δ is a clock constraint over X.

• F ⊆ S is a set of accepting states.
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Example: TBA

A = (Σ, S, S0, X, E, F )
(s, s′, a, λ, δ) ∈ E

s1 s0 s2 s3

b

a

a

x := 0

b, x < 2

a, x := 0
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(Accepting) TBA Runs

Definition. A run r, denoted by (s̄, ν̄), of a TBA (Σ, S, S0, X,E, F )
over a timed word (σ, τ) is an infinite sequence of the form

r : 〈s0, ν0〉
σ1−→
τ1

〈s1, ν1〉
σ2−→
τ2

〈s2, ν2〉
σ3−→
τ3

. . .

with si ∈ S and νi : X → R+

0 , satisfying the following requirements:

• Initiation: s0 ∈ S0 and ν(x) = 0 for all x ∈ X.

• Consecution: for all i ≥ 1, there is an edge in E of the form
(si−1, si, σi, λi, δi) such that

• (νi−1 + (τi − τi−1)) satisfies δi and

• νi = (νi−1 + (τi − τi−1))[λi := 0].
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Example: TBA

A = (Σ, S, S0, X, E, F )
(s, s′, a, λ, δ) ∈ E

s1 s0 s2 s3

b

a

a

x := 0

b, x < 2

a, x := 0
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(Accepting) TBA Runs

Definition. A run r, denoted by (s̄, ν̄), of a TBA (Σ, S, S0, X,E, F )
over a timed word (σ, τ) is an infinite sequence of the form

r : 〈s0, ν0〉
σ1−→
τ1

〈s1, ν1〉
σ2−→
τ2

〈s2, ν2〉
σ3−→
τ3

. . .

with si ∈ S and νi : X → R+

0 , satisfying the following requirements:

• Initiation: s0 ∈ S0 and ν(x) = 0 for all x ∈ X.

• Consecution: for all i ≥ 1, there is an edge in E of the form
(si−1, si, σi, λi, δi) such that

• (νi−1 + (τi − τi−1)) satisfies δi and

• νi = (νi−1 + (τi − τi−1))[λi := 0].

The set inf (r) ⊆ S consists of those states s ∈ S such that s = si for
infinitely many i ≥ 0.

Definition. A run r = (s̄, ν̄) of a TBA over timed word (σ, τ) is called
(an) accepting (run) if and only if inf (r) ∩ F 6= ∅.
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Example: (Accepting) Runs

r : 〈s0, ν0〉
σ1−−→
τ1

〈s1, ν1〉
σ2−−→
τ2

〈s2, ν2〉
σ3−−→
τ3

. . . initial and (si−1, si, σi, λi, δi) ∈ E, s.t.

(νi−1+(τi−τi−1)) |= δi, νi = (νi−1+(τi−τi−1))[λi := 0]. Accepting iff inf (r)∩F 6= ∅.

s1 s0 s2 s3

b

a

a

x := 0

b, x < 2

a, x := 0

Timed word: (a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), . . .

• Can we construct any run? Is it accepting?

• Can we construct a non-run?

• Can we construct a (non-)accepting run?
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TheLanguageof a TBA

Definition. For a TBA A, the language L(A) of timed words it
accepts is defined to be the set

{(σ, τ) | A has an accepting run over (σ, τ)}.

For short: L(A) is the language of A.

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.
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Example: Languageof a TBA

L(A) = {(σ, τ) | A has an accepting run over (σ, τ)}.

s1 s0 s2 s3

b

a

a

x := 0

b, x < 2

a, x := 0

Claim:

L(A) = Lcrt (= {((ab)ω, τ) | ∃ i ∀ j ≥ i : (τ2j < τ2j−1 + 2)})

Question: Is Lcrt timed regular or not?
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TheUniversality Problem isUndecidable for TBA

[Alur andDill , 1994]
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TheUniversality Problem

• Given: A TBA A over alphabet Σ.

• Question: Does A accept all timed words over Σ?

In other words: Is L(A) = {(σ, τ) | σ ∈ Σω, τ time sequence}.
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TheUniversality Problem

• Given: A TBA A over alphabet Σ.

• Question: Does A accept all timed words over Σ?

In other words: Is L(A) = {(σ, τ) | σ ∈ Σω, τ time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet Σ accepts all timed words over Σ is Π1

1-hard.

(“The class Π1
1 consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

• Let B be a Büchi Automaton over Σ.

• B is universal if and only if L(B) = ∅.

• B′ such that L(B′) = L(B) is effectively computable.

• Language emptyness is decidable for Büchi Automata.
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Proof Idea

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet Σ accepts all timed words over Σ is Π1

1-hard.

Proof Idea:

• Consider a language Lundec

which consists of the recurring computations of a 2-counter machine M .

• Construct a TBA A from M which accepts the complement of Lundec , i.e. with

L(A) = Lundec .

• Then A is universal if and only if Lundec is empty. . .

. . . which is the case if and only if M doesn’t have a recurring computation.
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OnceAgain: Two Counter Machines (Different Flavour)

A two-counter machine M

• has two counters C, D and

• a finite program consisting of n instructions.

• An instruction increments or decrements one of the counters, or
jumps, here even non-deterministically.

• A configuration of M is a triple 〈i, c, d〉:

program counter i ∈ {1, . . . , n}, values c, d ∈ N0 of C and D.

• A computation of M is an infinite consecutive sequence

〈1, 0, 0〉 = 〈i0, c0, d0〉, 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . .

that is, 〈ij+1, cj+1, dj+1〉 is a result executing instruction ij at 〈ij , cj , dj〉.

A computation of M is called recurring iff ij = 1 for infinitely many j ∈ N0.
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Step 1: TheLanguageof Recurr ing Computations

• Let M be a 2CM with n instructions.

Wanted: A timed language Lundec (over some alphabet) representing exactly
the recurring computations of M .
(In particular s.t. Lundec = ∅ if and only if M has no recurring computation.)

• Choose Σ = {b1, . . . , bn, a1, a2} as alphabet.

• We represent a configuration 〈i, c, d〉 of M by the sequence

bi a1 . . . a1
︸ ︷︷ ︸

c times

a2 . . . a2
︸ ︷︷ ︸

d times

= b1a
c
1a

d
2
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Step 1: TheLanguageof Recurr ing Computations

Let Lundec be the set of the timed words (σ, τ) with

• σ is of the form bi1a
c1
1 a

d1

2 bi2a
c2
1 a

d2

2 . . .

• 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . . is a recurring computation of M .

• For all j ∈ N0,

• the time of bij
is j.

• if cj+1 = cj :
for every a1 at time t in the interval [j, j + 1]
there is an a1 at time t + 1,

• if cj+1 = cj + 1:
for every a1 at time t in the interval [j + 1, j + 2],
except for the last one, there is an a1 at time t − 1,

• if cj+1 = cj − 1:
for every a1 at time t in the interval [j, j + 1],
except for the last one, there is an a1 at time t + 1,

And analogously for the a2’s.
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Step 2: Construct “ Observer” for Lundec

Wanted: A TBA A such that

L(A) = Lundec,

i.e., A accepts a timed word (σ, τ) if and only if (σ, τ) /∈ Lundec .

Approach: What are the reasons for a timed word not to be in Lundec?

Recall: (σ, τ) is in Lundec if and only if:

• σ = bi1a
c1
1 a

d1

2 bi2a
c2
1 a

d2

2

• 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . .
is a recurring computation of M .

• the time of bij
is j,

• if cj+1 = cj (= cj + 1, = cj − 1): . . .
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Step 2: Construct “ Observer” for Lundec

Wanted: A TBA A such that

L(A) = Lundec,

i.e., A accepts a timed word (σ, τ) if and only if (σ, τ) /∈ Lundec .

Approach: What are the reasons for a timed word not to be in Lundec?

(i) The bi at time j ∈ N is missing, or there is a spurious bi at time t ∈]j, j + 1[.

(ii) The prefix of the timed word with times 0 ≤ t < 1 doesn’t encode 〈1, 0, 0〉.

(iii) The timed word is not recurring, i.e. it has only finitely many bi.

(iv) The configuration encoded in [j +1, j +2[ doesn’t faithfully represent the effect
of instruction bi on the configuration encoded in [j, j + 1[.

Plan: Construct a TBA A0 for case (i), a TBA Ainit for case (ii), a TBA
Arecur for case (iii), and one TBA Ai for each instruction for case (iv).

Then set

A = A0 ∪ Ainit ∪ Arecur ∪
⋃

1≤i≤n

Ai
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Step 2.(i): Construct A0

(i) The bi at time j ∈ N is missing, or there is a spurious bi at time t ∈]j, j +1[.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
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Step 2.(ii ): Construct Ainit

(ii) The prefix of the timed word with times 0 ≤ t < 1 doesn’t encode 〈1, 0, 0〉.

• It accepts

{(σj , τj)j∈N0
| (σ0 6= b1) ∨ (τ0 6= 0) ∨ (τ1 6= 1)}.
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Step 2.(iii ): Construct Arecur

(iii) The timed word is not recurring, i.e. it has only finitely many bi.

• Arecur accepts words with only finitely many bi.
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Step 2.(iv): Construct Ai

(iv) The configuration encoded in [j + 1, j + 2[ doesn’t faithfully represent the

effect of instruction bi on the configuration encoded in [j, j + 1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A7 is A1
7 ∪ · · · ∪ A6

7.

• A1
7 accepts words with b7 at time j but neither b3 nor b5 at time j + 1.

“Easy to construct.”

• A2
7 is

ℓ0 ℓ1 ℓ2

∗

b7

x := 0

∗
a1

x < 1

x := 0

¬a1, x = 1

x 6= 1

• A3
7 accepts words which encode unexpected increment of counter C.

• A4
7, . . . ,A

6
7 accept words with missing decrement of D.
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Aha, And...?
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Consequences: Language Inclusion

• Given: Two TBAs A1 and A2 over alphabet B.

• Question: Is L(A1) ⊆ L(A2)?

Possible applications of a decision procedure:

• Characterise the allowed behaviour as A2 and model the design as A1.

• Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

• If language inclusion was decidable, then we could use it to decide
universality of A by checking

L(Auniv ) ⊆ L(A)

where Auniv is any universal TBA (which is easy to construct).
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Consequences: Complementation

• Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W ).

• Question: Is W timed regular?

Possible applications of a decision procedure:

• Characterise the allowed behaviour as A2 and model the design as A1.

• Automatically construct A3 with L(A3) = L(A2) and check

L(A1) ∩ L(A3) = ∅,

that is, whether the design has any non-allowed behaviour.

• Taking for granted that:

• The intersection automaton is effectively computable.

• The emptyness problem for Büchi automata is decidable.

(Proof by construction of region automaton [Alur and Dill, 1994].)
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Consequences: Complementation

• Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W ).

• Question: Is W timed regular?

• If the class of timed regular languages were closed under comple-
mentation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the Π1

1-hardness of the inclusion prob-
lem.” [Alur and Dill, 1994]

A non-complementable TBA A:
a

a
x := 0

a

a
x = 1

a

L(A) = {(aω, (ti)i∈N0
) | ∃ i ∈ N0 ∃ j > i : (tj = ti + 1)}

Complement language:

L(A) = {(aω, (ti)i∈N0
) | no two a are separated by distance 1}.
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BeyondTimed Regular
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BeyondTimed Regular

With clock constraints of the form

x + y ≤ x′ + y′

we can describe timed languages which are not timed regular.

In other words:

• There are strictly timed languages than timed regular languages.

• There exists timed languages L such that there exists no A with L(A) = L.

Example:

ℓ1

ℓ0 ℓ2

a, x := 0 b, y := 0

c

2x = 3y

{((abc)ω, τ) | ∀ j.(τ3j − τ3j−1) = 2(τ3j−1 − τ3j−2)}
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