Real-Time Systems

Lecture 18: Automatic Verification of DC Properties for TA II

2013-07-10
Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Completed Undecidability Results for TBA
- Started to relate TA and DC

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- How can we relate TA and DC formulae? What's a bit tricky about that?
- Can we use Uppaal to check whether a TA satisfies a DC formula?
- Content:
- An evolution-of-observables semantics of TA
- A satisfaction relation between TA and DC
- Model-checking DC properties with Uppaal

Observing Timed Automata

Wanted: A satisfaction relation between networks of timed automata and DC formulae, a notion of \mathcal{N} satisfies F, denoted by $\mathcal{N} \models F$.

Plan:

- Consider network \mathcal{N} consisting of TA

$$
\mathcal{A}_{e, i}=\left(L_{i}, C_{i}, B_{i}, U_{i}, X_{i}, V_{i}, I_{i}, E_{i}, \ell_{i n i, i}\right)
$$

- Define observables $\operatorname{Obs}(\mathcal{N})$ of \mathcal{N}.
- Define evolution \mathcal{I}_{ξ} of $\operatorname{Obs}(\mathcal{N})$ induced by computation path $\xi \in \operatorname{CompPaths}(\mathcal{N})$ of \mathcal{N}, $\operatorname{CompPaths}(\mathcal{N})=\{\xi \mid \xi$ is a computation path of $\mathcal{N}\}$
- Say $\mathcal{N} \models F$ if and only if $\forall \xi \in \operatorname{CompPaths}(\mathcal{N}): \mathcal{I}_{\xi} \models_{0} F$.

Observables of TA Network

Let \mathcal{N} be a network of n extended timed automata

$$
\mathcal{A}_{e, i}=\left(L_{i}, C_{i}, B_{i}, U_{i}, X_{i}, V_{i}, I_{i}, E_{i}, \ell_{i n i, i}\right)
$$

For simplicity: assume that the L_{i} and X_{i} are pairwise disjoint and that each V_{i} is pairwise disjoint to every L_{i} and X_{i} (otherwise rename).

- Definition: The observables $\operatorname{Obs}(\mathcal{N})$ of \mathcal{N} are
with

- $\mathcal{D}\left(\ell_{i}\right)=L_{i}$,
- $\mathcal{D}(v)$ as given, $v \in V_{i}$.

Observables of TA Network: Example

$$
\mathcal{A}_{e, i}=\left(L_{i}, C_{i}, B_{i}, U_{i}, X_{i}, V_{i}, I_{i}, E_{i}, \ell_{i n i, i}\right)
$$

The observables $\operatorname{Obs}(\mathcal{N})$ of \mathcal{N} are $\left\{\ell_{1}, \ldots, \ell_{n}\right\} \cup \bigcup_{1 \leq i \leq n} V_{i}$ with

- $\mathcal{D}\left(\ell_{i}\right)=L_{i}$,
- $\mathcal{D}(v)$ as given, $v \in V_{i}$.

$$
\begin{aligned}
& \operatorname{Obs}(W)=\left\{l_{1}, l_{2}\right\} \cup\{a\} \\
& D\left(h_{1}\right)=\{\text { off, Gight, bight }\} \\
& D\left(e_{2}\right)=\left\{e_{0}\right\} \\
& D(a)=\left\{0_{1} \ldots .5\right\}
\end{aligned}
$$

Evolutions of TA Network

Recall: computation path

$$
\xi=\left\langle\vec{\ell}_{0}, \nu_{0}\right\rangle, t_{0} \xrightarrow{\lambda_{1}}\left\langle\vec{\ell}_{1}, \nu_{1}\right\rangle, t_{1} \xrightarrow{\lambda_{2}}\left\langle\vec{\ell}_{2}, \nu_{2}\right\rangle, t_{2} \xrightarrow{\lambda_{3}} \ldots
$$

of $\mathcal{N}, \vec{\ell}_{j}$ denotes a tuple $\left\langle\ell_{j}^{1}, \ldots, \ell_{j}^{n}\right\rangle \in L_{1} \times \cdots \times L_{n}$.
Recall: Given ξ and $t \in$ Time, we use $\xi(t)$ to denote the set

$$
\left\{\langle\vec{\ell}, \nu\rangle \mid \exists i \in \mathbb{N}_{0}: t_{i} \leq t \leq t_{i+1} \wedge \vec{\ell}=\vec{\ell}_{i} \wedge \nu=\nu_{i}+t-t_{i}\right\} .
$$

of configurations at time t.
New: $\bar{\xi}(t)$ denotes $\left\langle\vec{\ell}_{j}, \nu_{j}+t-t_{j}\right\rangle$ where $j=\max \left\{i \in \mathbb{N}_{0} \mid t_{i} \leq t A \vec{\ell}=\vec{t}_{i}\right\}$.
Our choice:

- Ignore configurations assumed for 0-time only.
- Extend finite computation paths to infinite length, staying in last configuration.
Yet clocks advance - see later. (Assume no timelock.)

Evolutions of TA Network: Example

$$
\bar{\xi}(t) \text { denotes }\left\langle\vec{\ell}_{j}, \nu_{j}+t-t_{j}\right\rangle \text { where } j=\max \left\{i \in \mathbb{N}_{0}\left|t_{i} \leq t A \vec{\ell}-\vec{\ell}\right|\right\}
$$

Example:

$$
\begin{aligned}
& \text { - } \bar{\xi}(0)=\langle 0 \| f, x=0\rangle \\
& \text { - } \bar{\xi}(1.0)=\langle\text { off, } x=0+(1.0-0)\rangle \\
& \text { - } \bar{\xi}(2.5)=\langle 0(f, x=2.5\rangle \\
& \left\{i \mid t_{i} \leqslant 2.5\right\}=\{4,3,2,1\}
\end{aligned}
$$

Evolutions of TA Network Cont'd

$\bar{\xi}$ induces the unique interpretation

$$
\mathcal{I}_{\xi}: \operatorname{Obs}(\mathcal{N}) \rightarrow(\text { Time } \rightarrow \mathcal{D})
$$

of $\operatorname{Obs}(\mathcal{N})$ defined pointwise as follows:

$$
\mathcal{I}_{\xi}(a)(t)= \begin{cases}\ell^{i} & , \text { if } a=\ell_{i}, \bar{\xi}(t)=\left\langle\left\langle\ell^{1}, \ell^{i} ., \ell^{n}\right\rangle, \nu\right\rangle \\ \nu(a) & , \text { if } a \in V_{i}, \bar{\xi}(t)=\langle\vec{\ell}, \nu\rangle\end{cases}
$$

Example: $\mathcal{D}\left(\ell_{1}\right)=\{$ off, light, bright $\}$
$\xi=\left\langle\begin{array}{c}\text { off } \\ 0\end{array}\right\rangle, 0 \xrightarrow{2.5}\left\langle\begin{array}{c}\text { off } \\ 2.5\end{array}\right\rangle, 2.5 \xrightarrow{\tau}\left\langle\begin{array}{c}\text { light } \\ 0\end{array}\right\rangle, 2.5 \xrightarrow{\tau}\left\langle\begin{array}{c}\text { bright } \\ 0\end{array}\right\rangle, 2.5 \xrightarrow{\tau}\left\langle\begin{array}{c}\text { off } \\ 0\end{array}\right\rangle, 2.5 \xrightarrow{1.0}\left\langle\begin{array}{c}\text { off } \\ 1\end{array}\right\rangle, 3.5 \xrightarrow{\tau} \ldots$

Abbreviations as usual:

- $\mathcal{I}_{\xi}\left(\ell_{1}\right)(0)=$ off

Evolutions of TA Network Cont'd

- But what about clocks? Why not $x \in \operatorname{Obs}(\mathcal{N})$ for $x \in X_{i}$?
- We would know how to define $\mathcal{I}_{\xi}(x)(t)$, namely

$$
\left.\mathcal{I}_{\xi}(x)(t)=\nu_{j}(x)+\left(t-t_{\xi}\right) . \quad j=\operatorname{mdx} x \cdots\right\}
$$

- But... $\mathcal{I}_{\xi}(x)(t)$ changes too often.

Better (if wanted):
simple clack constraints

- add $\Phi\left(X_{1} \cup \cdots \cup X_{i}\right)$ to $\operatorname{Obs}(\mathcal{N})$, with $\mathcal{D}(\varphi)=\{0,1\}$ for $\varphi \in \Phi\left(X_{1} \cup \cdots \cup X_{i}\right)$.
- set

$$
\mathcal{I}_{\xi}(\varphi)(t)=\left\{\begin{array}{l}
1, \text { if } \nu(x) \models \varphi, \bar{\xi}(t)=\langle\vec{\ell}, \nu\rangle \\
0, \text { otherwise }
\end{array}\right.
$$

The truth value of constraint φ can endure over non-point intervals.

- First Answer: $\mathcal{N} \models F$ if and only if $\forall \xi \in \operatorname{CompPaths}(\mathcal{N}): \mathcal{I}_{\xi} \models_{0} F$.
- Second Question: what kinds of DC formulae can we check with Uppaal?
- Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)
- Quite clear: $F=\square\lceil$ off \rceil or $F=\neg \diamond\lceil$ light \rceil
(Use Uppaal's fragment of TCTL, something like $\forall \square$ off, but not exactly |(see-tater).)
- Maybe: $F=\ell>5 \Longrightarrow \diamond\lceil\text { off }\rceil^{5}$
- Not so clear: $F=\neg \diamond(\lceil$ bright \rceil; \lceil light $\rceil)$

Model-Checking DC Properties with Uppaal

- Second Question: what kinds of DC formulae can we check with Uppaal?

Wanted:

- a function f mapping DC formulae to Uppaal $\oplus \in$ formulaq and
- a transformation \sim of networks of TA
such that

$$
\tilde{\mathcal{N}} \models_{\text {Uppaal }} f(F) \Longleftrightarrow \mathcal{N} \models F\left(\Leftrightarrow \forall \xi \in \operatorname{lom}(\mathcal{N}) \cdot I_{\xi} F \neq F\right)
$$

One step more general: an additional observer construction $\mathcal{O}(\cdot)$ such that

$$
\tilde{\mathcal{N}} \| \mathcal{O}(F) \models \text { Uppaal } f_{\mathcal{O}}(F) \Longleftrightarrow \mathcal{N} \models F \quad \text { may use componeats of the }
$$

- Quite clear: $F=\square\lceil P\rceil$.
- Unfortunately, we have in geneval not

$$
\mathcal{N} \models \square\lceil P\rceil \nRightarrow \mathcal{N} \models_{v_{p}} \forall \square P,
$$

but ingenerat not

$$
\mathcal{N} \models_{0_{\mathbf{p}}} \forall \square P \Longrightarrow \mathcal{N} \models \square\lceil P\rceil
$$

because Uppaal also considers P without duration.

- Possible fix: measure duration explicitly, transform

to

Then check for $\mathcal{N} \models \forall \square(P \wedge z>0)$. if $P \equiv \ell$.

A More Systematic Approach

- We have seen $f_{\mathcal{O}}, \widetilde{\sim}$, and $\mathcal{O}(\cdot)$ with

$$
\begin{equation*}
\widetilde{\mathcal{N}} \| \mathcal{O}(F) \models U_{\text {opal }} f_{\mathcal{O}}(F) \Longleftrightarrow \mathcal{N} \models F \tag{*}
\end{equation*}
$$

for some particular F. Tedious: always have to prove (*).

- Better:
- characterise a subset of DC,
- give procedures to construct $f_{\mathcal{O}}(\cdot), \widetilde{\sim}$, and $\mathcal{O}(\cdot)$
- prove once and for all that, if F is in this fragment, then

$$
\tilde{\mathcal{N}} \| \mathcal{O}(F) \models \text { Uppaal } f_{\mathcal{O}}(F) \Longleftrightarrow \mathcal{N} \models F
$$

- Even better: exact (syntactic) characterisation of the DC fragment that is testable (not in the lecture).

Testability

Definition 6.1. A DC formula F is called testable if an observer (or test automaton (or monitor)) \mathcal{A}_{F} exists such that for all networks $\mathcal{N}=\mathcal{C}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ it holds that

$$
\mathcal{N} \models F \quad \text { ifs } \quad \mathcal{C}\left(\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{n}^{\prime}, \mathcal{A}_{F}\right) \models \forall \square \neg\left(\mathcal{A}_{F} . q_{b a d}\right)
$$

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

"Whenever we observe a change from A to $\neg A$ at time t_{A},
the system has to produce a change from B to $\neg B$ at some time $t_{B} \in\left[t_{A}, t_{A}+1\right]$ and a change from C to $\neg C$ at time $t_{B}+1$.

Sketch of Proof: Assume there is \mathcal{A}_{F} such that, for all networks \mathcal{N}, we have

$$
\mathcal{N} \models F \quad \text { iff } \quad \mathcal{C}\left(\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{n}^{\prime}, \mathcal{A}_{F}\right) \models \forall \square \neg\left(\mathcal{A}_{F} \cdot q_{b a d}\right)
$$

Assume the number of clocks in \mathcal{A}_{F} is $n \in \mathbb{N}_{0}$.

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_{A}:=1$
- $t_{B}^{i}:=t_{A}+\frac{2 i-1}{2(n+1)}$ fot $i=1, \ldots ., n+1$
- $\left.t_{C}^{i} \in\right] \overparen{t_{B}^{i}+1-\frac{1}{4(n+1)}}, t_{B}^{i}+1+\frac{1}{4(n+1)}[$ for $i=1, \ldots, n+1$ with $t_{C}^{i}-t_{B}^{i} \neq 1$ for $1 \leq i \leq n+1$.

Example: $n=3$

Example: $n=3$

- The shown interpretation \mathcal{I} satisfies assumption of property.
- It has $n+1$ candidates to satisfy commitment.
- By choice of t_{C}^{i}, the commitment is not satisfied; so F not satisfied.
- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$
- Because $n=3, \mathcal{A}_{F}$ can not save all $n+1$ time points t_{B}^{i}.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}^{\prime} such that $t_{C}^{i_{0}}:=t_{B}^{i_{0}}+1$.
- Then $\mathcal{I}^{\prime} \models F$, but \mathcal{A}_{F} reaches $q_{b a d}$ via the same path
- That is: \mathcal{A}_{F} claims $\mathcal{I}^{\prime} \not \models F$.
- Thus \mathcal{A}_{F} is not a test automaton. Contradiction.

Theorem 6.4. DC implementables are testable.

- Initialisation:
- Sequencing:
- Progress:
- Synchronisation:
- Bounded Stability:
- Unbounded Stability:
- Bounded initial stability:
- Unbounded initial stability:

$$
\begin{array}{r}
\rceil \vee\lceil\pi\rceil ; \text { true } \\
\lceil\pi\rceil \longrightarrow\left\lceil\pi \vee \pi_{1} \vee \cdots \vee \pi_{n}\right\rceil \\
\lceil\pi\rceil \xrightarrow{\theta}\lceil\neg \pi\rceil \\
\lceil\pi \wedge \varphi\rceil \xrightarrow{\theta}\lceil\neg \pi\rceil \\
\lceil\neg \pi\rceil ;\lceil\pi \wedge \varphi\rceil \xrightarrow{\leq \theta}\left\lceil\pi \vee \pi_{1} \vee \cdots \vee \pi_{n}\right\rceil \\
\lceil\neg \pi\rceil ;\lceil\pi \wedge \varphi\rceil \longrightarrow\left\lceil\pi \vee \pi_{1} \vee \cdots \vee \pi_{n}\right\rceil \\
\lceil\pi \wedge \varphi\rceil \xrightarrow{\leq \theta}\left\lceil\pi \vee \pi_{1} \vee \cdots \vee \pi_{n}\right\rceil \\
\lceil\pi \wedge \varphi\rceil \longrightarrow 0\left\lceil\pi \vee \pi_{1} \vee \cdots \vee \pi_{n}\right\rceil
\end{array}
$$

Proof Sketch:

- For each implementable F, construct \mathcal{A}_{F}.
- Prove that \mathcal{A}_{F} is a test automaton.

Proof of Theorem 6.4: Preliminaries

- Note: DC does not refer to communication between TA in the network, but only to data variables and locations.

Example:

$$
\bar{F}=\diamond(\lceil v=0\rceil ;\lceil v=1\rceil)
$$

- Recall: transitions of TA are only triggered by syncronisation, not by changes of data-variables.

Proof of Theorem 6.4: Preliminaries

- Note: DC does not refer to communication between TA in the network, but only to data variables and locations.

Example:

$$
\diamond(\lceil v=0\rceil ;\lceil v=1\rceil)
$$

- Recall: transitions of TA are only triggered by syncronisation, not by changes of data-variables.
- Approach: have auxiliary step action.

Technically, replace each
by

Note: the observer sees the data variables after the update.

Proof of Theorem 6.4: Sketch

- Example: $\lceil\pi\rceil \xrightarrow{\theta}\lceil\neg \pi\rceil$

Definition 6.5.

- A counterexample formula (CE for short) is a DC formula of the form:

$$
\text { true } ;\left(\left\lceil\pi_{1}\right\rceil \wedge \ell \in I_{1}\right) ; \ldots ;\left(\left\lceil\pi_{k}\right\rceil \wedge \ell \in I_{k}\right) ; \text { true }
$$

where for $1 \leq i \leq k$,

- π_{i} are state assertions,
- I_{i} are non-empty, and open, half-open, or closed time intervals of the form
- (b, e) or $[b, e)$ with $b \in \mathbb{Q}_{0}^{+}$and $e \in \mathbb{Q}_{0}^{+} \dot{U}\{\infty\}$,
- $(b, e]$ or $[b, e]$ with $b, e \in \mathbb{Q}_{0}^{+}$.
(b, ∞) and $[b, \infty)$ denote unbounded sets.
- Let F be a DC formula. A DC formula $F_{C E}$ is called counterexample formula for F if $\models F \Longleftrightarrow \neg\left(F_{C E}\right)$ holds.

Theorem 6.7. CE formulae are testable.

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

