— 18 — 2013-07-10 — main —

Real-Time Systems

Ledure 18: Automatic \erification d DC Propertiesfor TA Il

201307-10

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

- 18 — 2013-07-10 — Sprelim —

Last Lecture:
Completed Undecidability Results for TBA

Started to relate TA and DC

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
How can we relate TA and DC formulae? What's a bit tricky about that?

Can we use Uppaal to check whether a TA satisfies a DC formula?

Content:
An evolution-of-observables semantics of TA
A satisfaction relation between TA and DC

Model-checking DC properties with Uppaal

2/31

— 18 — 2013-07-10 — main

Observing Timed Automata

331
DC Properties of Timed Automata
press?
press! /2\ press! m press!
v=0 1/ 2 v=0
~ Tess? ?
= | = F
press? press!
xr >3
Wanted: A satisfaction relation between networks of timed automata and DC
formulae, a notion of A satisfies F, denoted by N |= F.
Plan:
Consider network N consisting of TA
) Ae,i = (LiaCiaBi7Ui:Xi7‘[£,]i7Ei;Zini,i)
:? Define observables Obs(\) of N.
E Define evolution Z¢ of Obs(N) induced by computation path
z ¢ € CompPaths(N) of N,
J CompPaths(N) = {£ | € is a computation path of N'}
‘ 431

Say N | F if and only if V¢ € CompPaths(N) : Z¢ }=o F.

Observables of TA Network

— 18 — 2013-07-10 — Staobs

Let A be a network of n extended timed automata

Aci = (Li, Ci, By, Ui, X3, Vi, I, B i i)

For simplicity: assume that the L; and X are pairwise disjoint and that each
V; is pairwise disjoint to every L; and X; (otherwise rename).

« Definition: The observables Obs(\) of A are

{tr,.... 030 | Wi
1<i<n
with \cwm-{ locahn of A,

o« D(;) =L,
o D(v) as given, v € V;.

5/31

Observables of TA Network: Example

obs

— 18 — 2013-07-10 — Sta,

Ae,i = (Li, Cz‘, Bi, Ui,Xi, ‘/i,Ii,Ei,éini,i)-

The observables Obs(N) of NV are {{1,...,¢n} U<, Vi with
« D) = L,
o D(v) as given, v € V;.

>3 d:.—.a-ﬂ

%(N)‘—“ﬂ'r, (zjufﬂg
@(01)={ ,C"L/,é.ﬂ'
DCl)- ;E,,z” al
D)~ €8,..57

6/31

Evolutions of TA Network

— 18 — 2013-07-10 — Staobs

Recall: computation path
€ = (lo. o) to =5 (D, 1)t 22 (D, va) by 22

of NV, ZJ denotes a tuple (£, ..., 01") € Ly X -+ X Ly,.
Npick He
Recall: Given £ and ¢ € Time, we use £(t) to denote the set (mf;?wm('q,,
A

— . — - -IA(
{<f,l/> | =L €Ng: t; <t<tin /\ngi/\V:l/i—l-t—ti}. "l;ﬂ(ﬂlh:n‘(‘
of configurations at time t.

New: £(t) denotes <Zj,y} +t —t;) where j = max{i € No | t; < t hee=4}.

Our choice:
» lgnore configurations assumed for O-time only.

o Extend finite computation paths to infinite length, staying in last
configuration.

Yet clocks advance — see later. (A.SSMM no 1('&!0&4.)

7/31

Evolutions of TA Network: Example

obs

— 18 — 2013-07-10 — Sta,

£(t) denotes (£, v+t — 12,) where j = max{i € Ny | t; < t hF=#}.

Example:
= (O g 25, (offy oor lighty oo 7 brighty oo r offy oo 10 offy oo
0 4 2.5~ 0 "~ 0 b o 0 VA 1
o L CZ 3 é(r £.5'

o £(0) = <°U/ =07
o £(1.0) = Lofl, x=0+(10-0)%
o £(2.5) = ol x=2.57

Tlkigds)=§¢3,2,1]

8/31

Evolutions of TA Network Cont’d

¢ induces the unique interpretation
Z¢ : Obs(N) — (Time — D)
of Obs(N) defined pointwise as follows:

O ifa= 0, &1) = (1, €m0

Le(a)(t) = {,/(a) Jifa eV, £(t) = (Gv)

Example: D(¢;) = {off, light, bright}

€= (5,0 22 (5f1),2.5 L (M) 0.5 2, (T8N 95 7. (31,25 22 () 55 2,
Ze
1 bright
S light
E Off‘ 1 1 1 1 1 1 1
8 o 1 2 3 4 5 6 7 [Time
v 9/31
Evolutions of TA Network Cont’d
ff, 25 off - ligh - brigh . off 0 off r
e=(5,),0 22, (5525 5 '€0t>,2.5.>< " Y255 (% y,2.5 =% ()85 5.

Abbreviations as usual:
Ze(61)(0) =off
I(t = off)(0) =1 I T(e)o) ~IGf)=off

< T(off) (1.0) = T(ey=off) (10)
dale if L; pairwise disjoint.
assefon

2013-07-10 — Staobs

— 18—

10/31

Evolutions of TA Network Cont’d

— 18 — 2013-07-10 — Staobs

— 18 — 2013-07-10 — main

But what about clocks? Why not 2 € Obs(N) for z € X7
We would know how to define Z¢(x)(t), namely

Te(o)(0) = v (0) + (1~ tgg). e s Ff
But... Z¢(z)(t) changes too ofter‘1l. ’
S\'»-f/e A
Better (if wanted):

add (I)(Xl U-.-- UXI) to ObS(N),
with D(p) = {0,1} for p € ®(X; U--- U X;).

set
L if v(2) | 0. €(t) = (o)

0, otherwise

Ze(p)(t) = {

The truth value of constraint ¢ can endure over non-point intervals.

Same Checlkable Properties

1131

12/31

Model-Checkng DC Properties with Uppad

— 18 — 2013-07-10 — Sdcvexa —

press?

press! 61\ press! @ press!
= G Gy

y<2

press? @ press?

x:=0 x <3

press?
>3

press!

First Answer: N |= F if and only if V¢ € CompPaths(N) : Z¢ = F.

Second Question: what kinds of DC formulae can we check with Uppaal?

Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

Quite clear: F = O[off] or F = =) light]
(Use Uppaal's fragment of TCTL, something like VI off,

but not exactly fseetatery.)

Maybe: F ={>5 = {[off]®

Not so clear: F' = ={([bright] ; [light])

— 18 — 2013-07-10 — Sdcvexa —

13/31
Model-Checkng DC Properties with Uppad
. press! /2\ press! m press!
. , y=0 1/ 2 v=0 ,
press? || ': F

z:=0

press?
>3

press!

Second Question: what kinds of DC formulae can we check with Uppaal?

Wanted: Queses
a function f mapping DC formulae to Uppaal iD€Eformutaq and
a transformation ~ of networks of TA

such that

K Evopaa F(F) = N E F (€ V€ g (¥) o T FF)

One step more general: an additional observer construction O(-) such that

N || O(F) Euppsal fo(F) <= N EF the
Uppaal JO W,Jwecwwb’/é‘[#wd

1431

Model-Checkng Invariants with Uppad

— 18 — 2013-07-10 — Sdcvexa —

— 18 — 2013-07-10 — main —

press?

press! @ press! /‘2\ press!
y:=0 U U y:=0

press? y<2 ?
= [! o = F
press? press! y>3
xr>3
o Quite clear: F' =[[P].
o Unfortunately, we have in 90"”‘/ not
NEDOP] & NEYOP,
but kn—generatnoy
N |:‘,rVDP = N EQO[P]
because Uppaal also considers P without duration.
o Possible fix: measure duration explicitly, transform 0
z =
z:=0
\/2\ o \Q\
\”/ L= 0/
® 2

Then check for N' = VO(P A z > 0). 'Y P,

Testable DC Properties

15/31

19/31

A More Systematic Approach

— 18 — 2013-07-10 — Sdctest —

press?

press!

"D EF

press? @ press?

z:=0 r<3

press?
z>3

We have seen fo, ~, and O(-) with
j\v[H O(F) ':Uppaal fO(F) = N |= F (*)
for some particular F'. Tedious: always have to prove (x).
Better:
characterise a subset of DC,

give procedures to construct fo(-), =, and O(+)
prove once and for all that, if F'is in this fragment, then

N || O(F) Evppant fo(F) = N EF

Even better: exact (syntactic) characterisation of the DC fragment that
is testable (not in the lecture).

— 18 — 2013-07-10 — Sdctest —

Testahility
Soput m‘%'cqv{ﬁq
a / N
Definition 6.1. A DC formula F' is called testable if an observer
(or test automaton (or monitor)) Ap £xists such that for all net-
works V' = C(A,...,A,) it holds tifat
NEF iff CAL..., A, Ar) EVO-(AF.-qbed)
Otherwise it's called untestable.
- J

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

20/31

21/3:1

Untestable DC Formulae Coniabt By,

— 18 — 2013-07-10 — Sdctest —

o[$$uu|f’)\'w- { A

Coww‘lwué
C

“Whenever we observe a change from A to —A at time ¢4,
the system has to produce a change from B to =B at some time tg € [ta,ta + 1]
and a change from C to =C at time tp + 1.

Sketch of Proof: Assume there is Ar such that, for all networks A/, we have
N'ZF iff C(i,...,A;,AF) lZVD—\(.AF.qbad)

Assume the number of clocks in Ag is n € INg.

Untestable DC Formulae Cont’d

— 18 — 2013-07-10 — Sdctest —

Consider the following time points:
ta:=1 b 14

thi=ta+ gy fofi=1,./in+1
) 7 1) 1 R
te €l +1— gy te + 1+ [fori=1...,n+1

with t&, —th #£1for 1 <i<n+1.

1
Example: n =3 L\\‘/‘},le
1 —
AI .
0
B, —
0 —_— —_— —_—
14t il mE &
Cz i A
0 P —_— —_—
0 1ty 1ty th 2ttt 3 tt3 'me
A

22/31

2331

Untestable DC Formulae Cont’d

— 18 — 2013-07-10 — Sdctest —

Example: n =3 “"f’l' si,{#‘”/
1 —/
AI
0
lyi—m— — — —
BI H
0 p— p— p—
1+t Sl T B
Or Lo
0 P —_— —_—

-
0 1y 6 th o2tk 2) th3 Time

The shown interpretation 7 satisfies assumption of property.
It has n 4+ 1 candidates to satisfy commitment.
By choice of t’é, the commitment is not satisfied; so F' not satisfied.

Because Apr is a test automaton for F, is has a computation path to gpaq.

Because n = 3, Ar can not save all n + 1 time points t%.

Thus there is 1 < ig < n such that all clocks of Ar have a valuation which is

not in 2 — {5 + (= 551y 1) .

— 18 — 2013-07-10 — Sdctest —

A —A
Untestable DC Formulae Cont’'d “[D
B === B e |
EuEs
Example: n =3 Cprrmrmmm FoTT T
I
1 . —
az) /
e
BI H H H H
0 —_— —_— PR—
. -
Oz PE D
0 —_— PE—
0 1ty 6ty o2k 2 th3 Time

Because Apr is a test automaton for F', is has a computation path to gpaq.
Thus there is 1 < 49 < n such that all clocks of Ar have a valuation which is

not in 2 — 1 + (— 171y)

Modify the computation to Z’ such that tico =10 1.
Then I’ = F, but A reaches quqq via the same path.
That is: Ap claims Z" (£ F.

Thus AFr is not a test automaton. Contradiction. -
/31

Testable DC Formulae

— 18 — 2013-07-10 — Sdctest —

Theorem 6.4. DC implementables are testable.

o Initialisation: [TV [r]; true
¢ Sequencing: [7] — [r VTV V]
o Progress: [7] 2, [—7]
o Synchronisation: [T A @] 2, [—7]
¢ Bounded Stability: [—7] s [A] =4 [TV Ve V]
¢ Unbounded Stability: [-7]s [T A@]—[nVTL V- Vg,
« Bounded initial stability: [AQ] <%0 [TVm V- V]
o Unbounded initial stability: [T A@]l—0o[T VT V- V7,]

Proof Sketch:
o For each implementable F', construct Ap.

o Prove that Ap is a test automaton.
26/31

Proof of Theorem 6.4;: Preliminaries

— 18 — 2013-07-10 — Sdctest —

o Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

= O(fo=0];Tv=1])

o Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

A
Beesom | 7
x>0 x20 V=0 %0
>] ” i 7. hvaid due! i«»/

V=0
x:70

27/31

Proof of Theorem 6.4:; Preliminaries

— 18 — 2013-07-10 — Sdctest —

Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

O(fv =073 [v=1])

Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

Approach: have auxiliary step action.

Technically, replace each

by CO“'*AH
N
C V4

Note: the observer sees the data variables after the update.

27/31

Proof of Theorem 6.4;: Sketch

— 18 — 2013-07-10 — Sdctest —

Example: [7] 2, [—-7]

step? @/.

step?

true

A

0

step?, 77@
x

>0 step?
step?, —m

step?| (Qbad

28/31

Courterexample Formulae

— 18 — 2013-07-10 — Sdctest

— 18 — 2013-07-10 — main

/

L

\

Definition 6.5.

A counterexample formula (CE for short) is a DC formula
of the form:

true; ([m | ALET)s...; ([mr] AL E I); true

where for 1 <7 <k,
m; are state assertions,
I; are non-empty, and open, half-open, or closed time
intervals of the form
(b,e) or [b,e) with b € QF and e € QF U {0},
(b, e] or [b,e] with be € QF .
(b,0) and [b, c0) denote unbounded sets.
Let F' be a DC formula. A DC formula F¢gg is called coun-
terexample formula for F if = F <= —(F¢g) holds.

Theorem 6.7. CE formulae are testable.

References

29/31

30/31

— 18 — 2013-07-10 — main —

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

3131

