Real-Time Systems

Lecture 03: Duration Calculus |

2013-04-23

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Correctness

» Let ‘Req’ be a requirement,
« 'Des' be a design, and
« ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of (Time — xI_;D(obs;)),
described in any form.

We say
« ‘Des’ is a correct design (wrt. 'Req’) if and only if

Des C Req.
« 'Impl' is a correct implementation (wrt. ‘Des' (or ‘Req’)) if and only if
Impl C Des (or Impl C Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des = Req' is valid.

Contents & Goals

Last Lecture:
© Model of timed behaviour: state variables and their interpretation

« First order predicate-logic for requirements and system properties

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.

« Read (and at best also write) Duration Calculus formulae.

« Content:
 Classes of requirements (safety,
 Duration Calculus:
Assertions, Terms, Formulae, Abbreviations, Examples

eness, etc.)

Classes of Timed Properties

Recall: Correctness

32
Safety Properties YxeM o x%0
Yxel) . 30
« A safety property states that Vxe M @ k20

something bad must never happen [Lamport].

« Example: train inside level crossing with gates open.
¢, o(cl=f0,f
« More general, assume observable C : Time — {0, 1} where C(t) = 1
represents a critical system state at time .
o
Then o
Vit e Time e ~C(t)

is a safety property.

« In general, a safety property is characterised as a property that can be
falsified in bounded time.

o But safety is not everything...

Liveness Properties

« The simplest form of a liveness property states that
something good eventually does happen.

Example: gates open for road traffic.

More general, assume observable G : Time — {0, 1} where G(t) = 1
represents a good system state at time ¢.
Then
St € Time o G(t)
is a liveness property.

ied in finite time.

Note: not falsi

ime, liveness is too weak...

Duration Properties

« A duration property states that
for observation interval [b, €] characterised by a condition A(b, €)
the accumulated time in which the system is in a certain critical

state has an upper bound u(b, e).
Rt Ielgsa/

« More general, re-consider critical thing C': Tifie — {0, 1}.

« Example: leakage in gas burner.

Then
e
teecTmes (100 = [Topar<ugo)
A
is a duration property.

« This property can again be falsified in finite time.

e e Albe)= e-b 30
u(be) = M\W. Le-t)

Bounded Response Properties

« A bounded response property states that

the desired reaction on an input occurs in time interval [b, ¢].

.

Example: from request to secure level crossing to gates closed.

= More general, re-consider good thing G : Time — {0,1} and request
R: Time — {0,1}.
Then
b e
Vit € Timee (R(t1) = 3ts € [t + W, 11 + 1] e G(t2))

is a bounded liveness property.

This property can again be falsified in finite time.

With gas burners, this is still not everything...

Duration Calculus

Duration Properties

« A duration property states that

the accumulated time in which the system is i ical
state has an upper bound u(b,)

« Example: leakage in gas burner.

A

Duration Calculus: Preview

« Duration Calculus is an interval logic.

« Formulae are evaluated in an (implicitly given) interval.

Back to our gas burner:

o G,F,I,H:Time — {0,1}

« Define L : Time — {0,1} as G A ~F
Strangest operators:

&
. eviishere — Example: (el

(Holds in a given interval [b, ¢] iff the gas valve is open almost everywhere.)

.« chop — Example: ([~I]§[1];[~1]) = £>1

(Ignition phases last at least one time unit.)

« integral — Example: € > 60 — fL< £

(At most 5% leakage time within intervals of at least 60 time units.)

10722 11/

Duration Calculus. Overview

b vacielles
chote vanabios

(i) Symbols: \ \g

troduce three (or five) syntactical “level

gRld R

4t

(v) Abbreviations:

[1. [Pl [PV, [PI¥, OF, OF

12/
Symbols; Examples
« The semantics of the function and predicate symbols assumed above
is fixed throughout the lecture:
,n=3
o true = tt, false = ff % RE—R
« 0 R is the (real) number zero, etc.] %_e,is. mu..vr
>
N 5,)
Aes o BiR?—Ris the addition of real numbers, etc. (%)) T ad are
i bif bead
!Mh.p.ﬂr « =:R? — B is the equality relation on real numbers, ¢ if o war
a b
. Z:R%— Bis the less-than relation on real numbers, etc. of
= wax ()

“Since the semantics is the expected one, we shall often simply use the
symbols 0,1, +, -, =, < when we mean their seman - "

s0,1,+,5 =, <

ot chote wragbe aveige
Gic)p atlie

15/

Symbols: Syntax

« f,g function symbols, each with arity n € N.

blggay '+ and Sy syrlot

-2 Ne3

Called constant if n = 0.

Assume: constants 0, 1,--- € INg;

« p.q: predicate symbols, also with arity.
inary =, <, >, <, >.

Assume: constants frue, fal

s z,y,2z € GVar: global variables.

» X,Y.Z € Obs: state variables or observables, each of a data type D

(or D(X),D(Y),D(Z) to be precise). eg. T
Called boolean observable if data type is {0,1}. Badnm.aswa?‘,lﬂ
« d: elements taken from data types D of observables.
9 ot
for®

130

__Yymbols Semantics.

» The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar — R
assigning each global variable 2 € GVar a real number V(z) € R.
We use Val to denote the set of all valuations, i.e. Val = (GVar — R).
Global variables are though fixed over time in system evolutions.
The semantics of a state variable is time-dependent.
It is given by an interpretation Z, i.e. a mapping

T : Obs — (Time — D)

assigning each state variable X € Obs a function HNAQ ﬂr\/lvmlNl;

T(X) : Time — D(X) HA_.En&q ~f
'
such that Z(X)(t) € D(X) denotes the value that X has at time ¢ € Time.

16/22

+ Semantical domains are
o the truth values B = {tt, ff},
o the real numbers R,
o time Time,
(mostly Time = R (continuous), exception Time = Ny (discrete time))
« and data types D.

+ The semantics of an n-ary function symbol f

is a (mathematical) function from R” to R, denoted f,

f:R" - R.

» The semantics of an n-ary predicate symbol p
is a function from R™ to B, denoted p, i.e.

p:R" - B.
« For constants (arity n = 0) we have f € R and p € B.

14/02

Symbols: Representing Sate Variables

« For convenience, we shall abbreviate 7(X) to Xz: Tk — DX/ oy
L3
+ An interpretation (of a state variable) can be displayed in form of a
R
timing diagram.

For instance,

4, if €clos)
et 5]
wt >y

olhastrive

R

with D(X) = {dy,ds}.

Duration Calculus. Overview

We will introduce three (or five) syntactical “levels":

(i) Symbols:
f.g, true, false,= <,> <,>, wy,z X)Y.Z d
(ii) State Assertions:
Pu=0|1|X=d|-P|PAP;

(iii) Terms:
0=z | 0| [P fr,....0,)
(iv) Formulae:

Fu=p(0s,....00) | ~Fy

FAAF |VeeF,

Fii By
(v) Abbreviations:

[1. [Pl [PV, [PI¥, OF, OF

18/2

Sate Assertions: Notes by 4 - o sbde

4

o T[XT(0) = TLX = 1](1) = Z(X)(t) = Xz(t), if X boolean, ie. d&k)=£51f
= R il
o I[P] is also called interpretation of P.

We shall write Py for it.

» Here we prefer 0 and 1 as boolean values (instead of tt and ff) — for
reasons that will become clear immediately.

21s2

Sate Assertions: SyntaxX 4, aehed fuochon .V.v\

m

» The set of state assertion:

defined by the following grammar:
Pu=0|1|X=d|[P | B AP,

with d € D(X). Qm.h m.@%\ (2,8)
We shall use P, Q, R to denote state assertions.
[x43,X, X0

« Abbreviations:
+ We shall write X instead of X = 1if D(X) =4.{01]
A=1
o Define v, =, <= asusual.

1922
Assertions. Exampl
Sate tions. Example s o (G=A)n 2(F=1)
« Boolean observables G and F'.
o State assertion L := G A -F, mrﬁ vanables FC
L..«.o.rr?
o Gl
stade 0 .
veiaoles ! _
pretebion ;) T —
Ygsechar
m.rﬁﬂaww 0 112 2 3 4 Time
o Lz(1.2) = 1, because
TLLIU2)=TLGrFY (1)< TCE>1aF1D(12)=1
TTG=13()=1 becwse I(E)(12)=1-7,
: e Lz(2) =0, because TEFAB(120e0 beawe TeR|(12)202(1
§) =0 E‘ﬁai%ﬁﬂ\%\??w:
? 22/a2

Sate Assertions. Semantics

o Gree an evolihan T

« The semantics of state assertion P is a function
Z[P] : Time — {0,1}

i.e. ZIP](t) denotes the truth value of P at time ¢ € Time.

« The value is defined inductively on the structure of P:

10l = ber, B-02H

T[-P(t) =1- TLRI)

. ﬁ A TP 34) - TCADKI=1

0 . cHaoge

References

20/02

4152

20130423 - main -

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

4202

