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The Region Automaton

%2 fin

Definition 4.29. [Region A ] The region
R(A) of the timed automaton A is the labelled transition system

R(A) = (Conf (R(A)). B { (| @ € B}, Cini) repd

where V\

o Conf(R(A)) = {{,[v]} | L€ L,v: X — Time,v |= I(£)},
« for each a € By \I:

(€, [V]) < reay (€. [V']) if and only if (£,v) == (¢, 0/)

in U(A), and

o Cini = {{lini, [Vini])} N Conf (R(A)) with v (X) = {0}.

Contents & Goals

Last Lecture:

« Started location reachability decidal

y (by region construction)

This Lectur
« Educational Objectives: Capabilities for following tasks/questions.

What is a region? What is the region automaton of this TA?

» What's the time abstract system of a TA? Why did we consider this?

+ What can you say about the complexity of Region-automaton based
reachability analysis?

* What's a zone? In contrast to a region?

» Motivation for having zones?
* What's a DBM? Who needs to know DBMs?

« Content:
« Region automaton cont'd

Proposition. The transition relation of R(A) is well-defined, that
is, independent of the choice of the representative v of a region |

H « Reachability Problems for Extended Timed Automata
g o Zones
2 « Difference Bound Matrices )
Example: Region Automaton
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The Location Reachability Problem Cont’d

Remark

Remark 4.30. That a configuration (¢, [v]) is reachable in R(.A)
represents the fact, that all (£,v) are reachable.

IAW: in A, we can observe v when

location £ has just been entered.
The clock values reachable by staying/letting time pass in £ are
not explicitly represented by the regions of R(A).




Deddability of The Location Reachakility Problem

Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[ Observe: clock constraints are simple
— w.l.o.g. assume constants c € No.
O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay trans
| Lem. 4.20: location reachability
of Ais preserved in U(A).
| Def. 4.29: region automaton R(A) —
) equivalent configurations collapse into regions
© 0 Lem. 4.32: location reachability of /(A)
H is preserved in R(A)
L O Lem. 4.28: R(A) is finite.
' 7
The Number of Regions ikl ol X
(bes of elowasly 1 X)
Lemma 4.28. Let X be a sgt of clocks, ¢, € INg the maximal
constant for each = € X, and ¢ = max{c, | € X}. Then
(2¢+2)IX1 . (4¢ + 3)2IXI-0XI-D)
s an upper bound on the number of regions.
Proof: [Olderog and Dierks, 2008]
1
x| Lkl (K7,
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Region Automaton Properties

Lemma 4.32. [Correctness| For all locations ¢ of a given
automaton A the following holds:

£ is reachable in U(A) if and only if £ is reachable in R(A).

o
For the Proof: <6p,> <>
o

in
H i
3V e by =< 0>
Definition 4.21. [Bisimulation] An equivalence relation ~ on val-
uations is a (strong) bisimulation if and only if, whenever
v ~ o and (£,1) == (¢, v])

then there exists 14 with v ~ v} and (£, va) == (', v}).

T

Lemma 4.26. [Bisimulation] = is a strong bisimulation.

Observations Regarding the Number of Regions

» Lemma 4.28 in particular tells us that each timed automaton (in our

de on) has finitely many regions.
G os QA s fuce

« Note: the upper bound is a worst case, not an exact bound.

ey | &<y, FB oM oy il nn.:.xmmsww
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Deddability of The Location Reachakility Problem

Claim: (Theorem 4.33)
The location reachabili

problem is decidable for timed

Approach: Constructive proof.

o

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INg.

o

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay tran:

Lem. 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[m]

Lem. 4.32: location reachability of 1/(.A)
is preserved in R(A).

o

Lem. 4.28: R(A) is finite.

Deddability of The Location Reachalility Problem

Claim: (Theorem 4.33)

The location r problem is for timed

Approach: Constructive proof.

Observe: clock constraints are simple
— w.lo.g. assume constants ¢ € INy.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

01 Lem. 4.20: location reachability
of Ais preserved in U(A).
0 Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions
Tl Lem. 4.32: location reachability of L(.A)
is preserved in R(A).
[ Lem. 4.28: R(A) is finite.
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Putting It All Together

Let A= (L,B,X,I,E, (;,;) be a timed automaton, ¢ € L a location.
« R(A) can be constructed effectively.

ions in L (by definition).

» There are finitely many regions by Lemma 4.28.

» So Conf(R(A)) is finite (by construction).

o It is decidable whether (Ciyi of R(A) is empty) or whether there exists
a sequence

« There are finitely many loca

(Cini Wina]) S reay (0, 01]) S reay - S reay (Ens 2]

such that £, = ¢ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

1331
The Delay Operation
o Let [1] be a clock region.
* We set
delay[v] = {v/ +t | v = v and t € Time}.
y
1
0 €T
) 0 1 :
b « Note: delay[v] can be represented as a finite union of regions.
3 For example, with our two-clock example we have
delayle =y =0] =
' 15/:1

The Constraint Reachahility Problem

20130618 - Sdec

» Given: A timed automaton A, one of its control locations ¢, and a clock
constraint .

+ Question: Is a configuration (,v) reachable where v |= ¢, i.e. is there

a transition sequence of the form
A X A A
(Cinis Vini) == (i) =5 (b, v2) = 5 (b, vg) = (L)

n system 7 (A) with v = ¢?

the labelled tran:

« Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed
automata is decidable.

Zones

(Presentation foll owing [Franze, 2007)

14/m
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The Delay Operation

o Let [1/] be a clock region.

y<t ¢ >0
X

O—=5—0—"%0

x&1

X1
© We set P=x>0 & €28z

delay[v] = {v/ + | v/ = v and t € Time .
P28 w020

15/

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € No the maximal constant
for each € X, and ¢ = max{c, | « € X}. Then

(2c+2)X! - (4c+ 3)3IXI-0X1-1)

is an upper bound on the number of regions.

« In the desk lamp controller,

+>3

e
F&_‘mmmo-_m are reachable in R(L), but we convinced ourselves that it's
actually only important whether v(z).€ [0,3] or v(z) € (3,0).

So: seems there are even classes of undisti regions.
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Wanted: Zonesinstead o Regions

o suchomaln,

« In R(L) we have transitions:

© (@ 0 ZZ @ 0n), (@ 40) T @ 0.1),
* <@ 0) LKD), <Ot > £25¢@, (12, 0,000 #L0,723)
(@) Y@ 2.3). (@00 T Y@ ()

« Which seems to be a complicated way to write just:

(@) 2= (@), 0.3)

« Can’t we constructively abstract £ to:

@ o —2=L @ oy — 2@ 0.3)

E«& mé.ﬂ ?
press? § press?

@ .) [0,09))

More Examples: Zone or Not?

v YES by
L.V \\ (¢72) 4 (591)  Lx-y20) A (x-g¢2)
| .
T 2 3 7
v YES by
2 (x21)a ?mm;@.s\

\5. W Dpls ety castimints
(k=9:1) v (ketay=2) & A

i w

m

What isa Zone?

Definition. A (clock) zone is a set z C (X — Time) of valuations
of clocks X such that there exists ¢ € ®(X) with

v e zif and only if v |= .

(135,1€) & & 2.

(e2422) Ensf i o

Example: y
g=IS) s in 2

S~ (yyer) s L2

is a clock zone by o 1 s s

¢ =(x2) A(x>1) n (427) 4 (y<2) 2 (x=520)
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Zone-based Reachalility

@ and initial configuration (@). {0})

FE]

an edyp o s aicinsch,

Assume a function \

Post?: (L x Zones) — (L x Zones)
such that Post.(((, z)) yields the configuration (¢, 2’} such that
« zone z' denotes exactly those clock valuations v’
« which are reachable from a configuration (£, v), v € z,
by taking edge e = (£, 0,0, Y. ') € E.
folly g
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__WhatisaZone? b L7

~F
Definition. A (clock) zone is a set z C (X — Time) of valuations

of clocks X such that there exists ¢ € ®(X) with

v e zifandonly if v |= .

s clocly
Oshaiids
Example: Y 9&« siplind, ceM})
| A
is a clock zone by o 1 o2 3 7

e=@<DAE@E>DAW=)AG<2A(r—y>0)

« Note: Each clock int  is a symbolic ion of a zone.

d between clock ints and zones.

* But: There's no

The zone z = {) corresponds to (z > 1 Az < 1), (z > 2Ax <2),
1931

Zone-based Reachalility

press?

Given:

() and initial configuration (@), {0})

>3

?n&»m\&ﬁ hmatan

Assume a function _\
Post¥: (L x Zones) — (L x Zones)

such that Post.((f,z)) yields the configuration (¢',2) such that
« zone 2’ denotes exactly those clock valuations v’
« which are reachable from a configuration (¢, v € z,
« bystaking edge e = ((,a, 0, Y, (') € E.

Then ¢ € L is reachable in A if and only if
Post,, (... (Poste, ({£;

for some ey,...,e, € E.
21m



What isa Good* Post” ?

Zone-based Reachahility: In Other Words Socktaking: What's Missng?
Given: = > 6 B szl @ b 2 « If 2 is given by a constraint ¢ € ®(X), then the zone component 2’ of
; X . o Post.(l,z) = (¢, 2') should also be a constraint from ®(X).
. oz,i =5 @ and initial configuration A° {0}) N Wmvm.mﬂr (Because sets of clock valuations are soo unhandily. .. )
o pic
o dhends ea QJ%E.«X\: ca Eu (€. NM muoa.h and o Good news: the following operations can be carried out by manipulating .
« an edge ¢ € E with source
Wanted: A procedure to compute 1 such that Post.((£, z)) is not already subsumed by R  The elapse time operation:
the set o Set R:= {{fini, zini)} C L x Zones e add Poste((£,2)) to R 1:9(X) — ®(X)
o) « Repeat ¥ 2 FI(e) until no more such (£,2) € R and ¢ € E are found.
(@ « pick Given a constraint ¢, the constraint 1 (), or ¢ 1 in postfix notation, is
. A®4 [0,3]) « a pair {£,2) from R and Missing: supposed to denote the set of clock valuations -
- (@ 0.) * an edge ¢ € E with source ¢ « Algorithm to effectively compute Post, ({¢, z)) for given configuration {4tV gt e Time).
such that Post (¢, 2)) is not (¢,z) € L x Zones and edge € € E.
meM< M:MMMSVJR_ _u<mm i » Decision procedure for whether configuration (¢, 2') is subsumed by a In other symbols: we want
3 « add Post.((£, z)) to i R a Y
. until no more such (¢, ) € R and 3 given subset of L x Zones. . [T)]l=lp1l={v+t|velelte Time}. 12
2 ¢ € B are found. u Note: Algorithm in general terminates only if we apply widening to zones, 2 To this end: remove all upper bounds = < ¢, = < ¢ from ¢ and add
. . thatis, roughly, to take maximal constants c, into account (not in lecture). i y -
. B 2 diagonals.
' 22/ 23 ' 2473
GoodNews Cont'd Thisis Good News. Example
because given ((, z) = (£, g0} and € = (€, @, 9, {41, yn}- ) € E we have ser=wl . _jet time elapsa
Good news: the following operations can be carried out by mal ’ » ¥0, PGP AL Yy e w2 =1 AI(f) intersect with invariant of £
« elapse time ¢ | with Poste((€,2)) = (', 5) cpa=g2hg intersect with guard
. © i = oslyr = 0] [yn = 0] reset clocks
where
o o5 =@s AI({') intersect with invariant of ¢/

[ 1l={v+t|veteTime}
cp1=wol

« zone intersection p; A @2 h let time elapse starting from wo: @1 represents all valuations reachable by
waiting in £ for an arbitrary amount of time.

[pr Al ={v | v w1 and v = o} 2 VN 2

e =i A0 (& _

intersect with invariant of £: o, represents the reachable%good'valuations.

.
[3a.] = {v | there is t € Time such that v/ ces=p2 A 0o 1 2 3 o 1 2 3 R
intersect with guard: (s are the reachable good'valuations where ¢ is enabled.
L. 0] with o s = gslyn = 0. [yn = 0] v v v
Tole == 0] = [& = 0 A 3ag] g reset clocks: ¢, are all possible outcomes of taking e from 3 2 2 3
D e g =@ AI() : 1 f As ”
E w3 P1 s

8 g . PR . \ .
8 intersect with invariant of ¢': 5 are n:m,moen\cﬁnoamm of taking e from 3
oz 27/
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Difference BoundMatrices

Difference BoundMatrices

digjsint wran
« Given a finite set gfclocks X, a DBM over X is a mapping

M (X U{ao} x X U{xo}) — ({<, <} x ZU{(<,00)})

« M(z,y) = (~,c) encodes the conjunct & — y ~ ¢ ( and y can be ().

€3¢ fxz2
vf (<eof§

0130618
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« Given a finite set of clocks X, a DBM over X is a mapping

M2 (X U {zo} x X U{mo}) = ({<, <} x ZU{(<, 00)})

« M(x,y) = (~,c) encodes the conjunct = — y ~ ¢ (= and y can be ).

o If M and N are DBM encoding ; and ¢, (representing zones z; and z3),

then we can efficiently compute M T, M A N, M|z := 0] such that
« all three are again DBM,

o M T encodes p; T,

o« M AN encodes @1 A s, and

« Mz := 0] encodes ¢y [x := 0].

« And there is a canonical form of DBM — canonisation of DBM can be

done in cubic time (Floyd-Warshall algorithm).

« Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.
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Pros and cons

« Zone-based reachability analysis usually is explicit wrt. discrete locations:
n/zone pairs or

t of loca

« maintains a list of location/DBM pairs

» confined wrt. size of discrete state space

o avoids blowup by number of clocks and size of clock constraints
through symbolic representation of clocks

* maintains a

« Region-based analysis provides a finite-state abstraction, amenable to
finite-state symbolic MC
o less dependent on size of discrete state space
+ exponential in number of clocks
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