Real-Time Systems

Lecture 13: Regions and Zones

2013-06-18

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

The Region Automaton Definition 4.29. [Region Automaton] The region automaton $\mathcal{R}(\mathcal{A})$ of the timed automaton \mathcal{A} is the labelled transition system • $C_{ini} = \{\langle \ell_{ini}, [\nu_{ini}] \rangle\} \cap Conf(\mathcal{R}(\mathcal{A})) \text{ with } \nu_{ini}(X) = \{0\}.$ for each α ∈ B_{?!}, $\bullet \ \operatorname{Conf}(\mathcal{R}(\mathcal{A})) = \{ \langle \ell, [\nu] \rangle \mid \ \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}.$ in $\mathcal{U}(\mathcal{A})$, and $\mathcal{R}(\mathcal{A}) = (Conf(\mathcal{R}(\mathcal{A})), \beta_{\mathrm{Pi}}, \{\stackrel{\alpha}{\longrightarrow}_{R(\mathcal{A})} | \ \alpha \in B_{\mathrm{Pi}}\}, C_{\mathrm{ini}}) \qquad \text{where} \quad \text$ $\langle \ell, [\nu] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell', [\nu'] \rangle \text{ if and only if } \langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$ one region To 13

Proposition. The transition relation of $\mathcal{R}(\mathcal{A})$ is well-defined, that is, independent of the choice of the representative ν of a region $[\nu]$.

 $\cdots \stackrel{\mathsf{press}}{\Longrightarrow} \langle \mathsf{light}, [x=0] \rangle$

 $\langle \mathsf{bright}, [x=3.001] \rangle \xrightarrow{\mathsf{pmss}} \cdots$

301061333

 $\langle \mathsf{off}, [x=0] \rangle \stackrel{\mathsf{press}}{\Longrightarrow} \cdots$

 $\langle \mathsf{off}, [x=2.9] \rangle \stackrel{\mathsf{press}}{\Longrightarrow} \cdots$ $\langle \mathsf{off}, [x=3.0] \rangle \stackrel{\mathsf{press}}{\Longrightarrow} \cdots$

 $\langle \mathsf{off}, [x=3.001] \rangle \stackrel{\mathsf{press}}{\Longrightarrow} \cdots$

{\$\$ /0<06)<1}

Contents & Goals

Last Lecture:

Started location reachability decidability (by region construction)

- This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 What is a region? What is the region automaton of this TA?
 What's the time abstract system of a TA? Why did we consider this?
 What can you say about the complexity of Region-automaton based reachability analysis?

- What's a zone? In contrast to a region?
 Motivation for having zones?
 What's a DBM? Who needs to know DBMs?

Region automaton cont'd
 Reachability Problems for Extended Timed Automata

The Location Reachability Problem Cont'd

2/31

Difference Bound Matrices

Remark

Example: Region Automaton

Remark 4.30. That a configuration $\langle \ell, [\nu] \rangle$ is reachable in $\mathcal{R}(\mathcal{A})$ represents the fact, that all $\langle \ell, \nu \rangle$ are reachable.

The clock values reachable by staying/letting time pass in ℓ are not explicitly represented by the regions of $\mathcal{R}(\mathcal{A})$. IAW: in $\mathcal A$, we can observe ν when location ℓ has just been entered.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

```
✓ Lem. 4.20: location reachability of \mathcal{A} is preserved in \mathcal{U}(\mathcal{A}).
                                                                         x Lem. 4.32: location reachability of \mathcal{U}(\mathcal{A}) is preserved in \mathcal{R}(\mathcal{A}).
                                                                                                                                                                                                                                                                                                                                                                                                          ✓ Def. 4.19: time-abstract transition system \mathcal{U}(\mathcal{A}) — abstracts from uncountably many delay transitions, still infinite-state.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Approach: Constructive proof.
\times Lem. 4.28: \mathcal{R}(\mathcal{A}) is finite.
                                                                                                                                                                             \checkmark Def. 4.29: region automaton \mathcal{R}(\mathcal{A}) — equivalent configurations collapse into regions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ✓ Observe: clock constraints are simple — w.l.o.g. assume constants c \in \mathbb{N}_0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     The location reachability problem is decidable for timed automata
```

```
The Number of Regions
(number of elevants in X)
```

Proof: [Olderog and Dierks, 2008]

is an upper bound on the number of regions.

$$| (\omega_{k}(\mathcal{R}(\lambda))) | \leq | | L | | \cdot | (2c_{+}2)^{|K|} \cdot (4c_{+}3)^{\frac{n}{n}|K|} \cdot (K)^{-n}$$

Lemma 4.28. Let X be a set of clocks, $c_x\in\mathbb{N}_0$ the maximal constant for each $x\in X$, and $c=\max\{c_x\mid x\in X\}$. Then $(2c+2)^{|X|}\cdot (4c+3)^{\frac{1}{2}|X|\cdot (|X|-1)}$

```
4 | Conf((R(A)) | = | L | · (2c+2) | K | · (4c+3) 2 k | · (1/4-1)
```

Observations Regarding the Number of Regions

```
    Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

& thus R(A) is finite
```

Note: the upper bound is a worst case, not an exact bound.

eg. If Cx<'cy, 1/28 abili works with c=max Ecx, cys

11/31

10/31

Region Automaton Properties

```
Lemma 4.32. [Correctness] For all locations \ell of a given timed automaton \mathcal A the following holds:
\ell is reachable in \mathcal{U}(\mathcal{A}) if and only if \ell is reachable in \mathcal{R}(\mathcal{A}).
```

For the Proof: Definition 4.21. [Bisimulation] An equivalence relation \sim on valuations is a (strong) bisimulation if and only if, whenever then there exists ν_2' with $\nu_1' \sim \nu_2'$ and $\langle \ell, \nu_2 \rangle \stackrel{\Delta}{\Longrightarrow} \langle \ell', \nu_2' \rangle$. $\nu_1 \sim \nu_2$ and $\langle \ell, \nu_1 \rangle \stackrel{\triangle}{\Longrightarrow} \langle \ell', \nu'_1 \rangle$ <0,,>=><0,;>

Lemma 4.26. [Bisimulation] \cong is a strong bisimulation. - Hegion equipmence

8/31

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata

Approach: Constructive proof.

✓ Observe: clock constraints are simple — w.l.o.g. assume constants $c \in \mathbb{N}_0$.

✓ Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ — abstracts from uncountably many delay transitions, still infinite-state.

✓ Lem. 4.20: location reachability of A is preserved in U(A).

✓ Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ — equivalent configurations collapse into regions

✓ Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.

 \mathbf{x} Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

9/31

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata

Approach: Constructive proof.

 \checkmark Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ — abstracts from uncountably many delay transitions, still infinite-state. \checkmark Observe: clock constraints are simple — w.l.o.g. assume constants $c \in \mathbb{N}_0$.

✓ Lem. 4.20: location reachability of \mathcal{A} is preserved in $\mathcal{U}(\mathcal{A})$.

✓ Def. 4.29: region automaton $\mathcal{R}(\mathcal{A})$ — equivalent configurations collapse into regions

✓ Lem. 4.32: location reachability of $\mathcal{U}(\mathcal{A})$ is preserved in $\mathcal{R}(\mathcal{A})$.

 \checkmark Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.

Putting It All Together

Let $\mathcal{A}=(L,B,X,I,E,\ell_{ini})$ be a timed automaton, $\ell\in L$ a location.

- R(A) can be constructed effectively.
- $\bullet\,$ There are finitely many locations in L (by definition).
- * There are finitely many regions by Lemma 4.28. * So $Conf(\mathcal{R}(\mathcal{A}))$ is finite (by construction). * It is decidable whether (C_{init} of $\mathcal{R}(\mathcal{A})$ is empty) or whether there exists
- a sequence

 $\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_{1}, [\nu_{1}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_{n}, [\nu_{n}] \rangle$

such that $\ell_n=\ell$ (reachability in graphs).

 $\label{eq:continuous} Theorem~4.33.~ [Decidability] $$ The location reachability problem for timed automata is decidable.$

13/31

The Delay Operation

- We set Let [ν] be a clock region.
- $delay[\nu] = \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$

Note: delay[\nu] can be represented as a finite union of regions.

delay[x = y = 0] = [For example, with our two-clock example we have

15/31

The Constraint Reachability Problem

- \bullet Given: A timed automaton $\mathcal{A}_{\!\!4}$ one of its control locations $\ell,$ and a clock constraint $\varphi.$
- Question: Is a configuration $\langle\ell,\nu\rangle$ reachable where $\nu\models\varphi,$ i.e. is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_1} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$
 in the labelled transition system $\mathcal{T}(\mathcal{A})$ with $\nu \models \varphi$?

* Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

14/31

The Delay Operation We set • Let $[\nu]$ be a clock region. $delay[\nu] = \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}. \qquad \text{$\not P = x > S in $\ell > \mu$}$ 0 ys1 0 x20 00 φ=x>0 « 6? % 15/31

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x\in \mathbb{N}_0$ the maximal constant for each $x\in X$, and $c=\max\{c_x\mid x\in X\}$. Then is an upper bound on the number of regions. $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$

In the desk lamp controller,

(Presentation following [Fränzle, 2007]) Zones

bill regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's actually only important whether $\nu(x)$ $\in [0,3]$ or $\nu(x) \in (3,\infty)$. So: seems there are even equivalence classes of undistinguishable regions.

17/31

Wanted: Zones instead of Regions

- Type, submath
 In $\mathcal{R}(\mathcal{L})$ we have transitions:
 $(\omega_0, \{0\}) \xrightarrow{prose^2} \mathcal{L}(\omega_0, \{0\})$, $(\omega_0, \{0\}) \xrightarrow{prose^2} \mathcal{L}(\omega_0, \{0\})$
- Which seems to be a complicated way to write just: $(\underbrace{\{\omega_0\}}, \{0\}) \xrightarrow{Press?} (\underbrace{\{\omega_0\}}, [0, 3])$
- * Can't we constructively abstract \mathcal{L} to: $\frac{press?}{press?} \geq \frac{\langle \mathbf{o}_{\parallel} \langle 0 \rangle \rangle}{press?} \frac{press?}{2} \geq \frac{\langle \mathbf{o}_{\parallel} \langle 0 \rangle \rangle}{press?} \frac{press?}{2} \frac{press?}{press?}$

18/31

What is a Zone?

What is a Zone?

valuation of X

Definition. A (clock) zone is a set $z\subseteq (X-T\text{ Time})$ of valuations of clocks X such that there exists $\varphi\in\Phi(X)$ with

 $\nu \in z$ if and only if $\nu \models \varphi$.

single cleck
constraints
(for singularity (ENS)

Definition. A (clock) zone is a set $z\subseteq (X\to \mathrm{Time})$ of valuations of clocks X such that there exists $\varphi\in\Phi(X)$ with $\nu\in z \text{ if and only if } \nu\models\varphi.$ Example: $\nu = \frac{(i\otimes_{z},i) \text{ is }\widehat{n} \geq -(n\cdot 2,q\cdot 2) \text{ is not }$

 $\varphi = (x \in 2) \wedge (x > 1) \wedge (y \geq 1) \wedge (y < 2) \wedge (x - y > 0)$

is a clock zone by

• But: There's no one-on-one correspondence between clock constraints and zones. The zone $z=\emptyset$ corresponds to $(x>1 \land x<1), (x>2 \land x<2), \ldots$

19/31

Note: Each clock constraint φ is a symbolic representation of a zone.

 $\varphi = (x \leq 2) \wedge (x > 1) \wedge (y \geq 1) \wedge (y < 2) \wedge (x - y \geq 0)$

19/31

Zone-based Reachability

More Examples: Zone or Not?

HES by

(x21) ~ (4x1) ~ (x-y20) ~ (x-y22)

YES by $(*>1)_A (* \le 2)_A (y=0)$

wot in simple clock costioning

(K=9:4) V (K=942) (b. NO

21/31

for some $e_1, \ldots, e_n \in E$.

 $\operatorname{Post}_{e_n}(\dots(\operatorname{Post}_{e_1}(\langle \ell_{\mathit{ini}}, z_{\mathit{ini}} \rangle) \dots))$

Zone-based Reachability

Zone-based Reachability: In Other Words

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

- elapse time
$$\varphi\uparrow$$
 with
$$[\![\varphi\uparrow]\!]=\{\nu+t\mid\nu\models\varphi,t\in\mathrm{Time}\}$$

• zone intersection
$$\varphi_1 \wedge \varphi_2$$
 with

$$\llbracket \varphi_1 \wedge \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}$$

 $[\![\exists x.\varphi]\!] = \{\nu \mid \mathsf{there} \; \mathsf{is} \; t \in \mathsf{Time} \; \mathsf{such} \; \mathsf{that} \; \nu[x := t] \models \varphi\}$

clock hiding ∃x.φ with

- clock reset
$$\varphi[x:=0]$$
 with
$$[\![\varphi[x:=0]\!]\!] = [\![x=0 \land \exists\, x.\varphi]\!]$$

25/31

Stocktaking: What's Missing?

• Set $R := \{\langle \ell_{ini}, z_{ini} \rangle\} \subset L \times \mathbf{Z}$ ones • Repeat

• a pair $\langle \ell,z \rangle$ from R and • an edge $e \in E$ with source ℓ

* Algorithm to effectively compute $\mathrm{Post}_+((\ell,z))$ for given configuration $(\ell,z)\in L \times \mathrm{Zones}$ and edge $e\in E$.

* Decision procedure for whether configuration (ℓ',z') is subsumed by a given subset of $L \times \mathrm{Zones}$.

Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

such that $\mathrm{Post}_e(\langle\ell,z\rangle)$ is not already subsumed by R • add $\mathrm{Post}_e(\langle\ell,z\rangle)$ to R

until no more such $\langle \ell,z\rangle \in R$ and $e \in E$ are found.

This is Good News...

...because given $\langle \ell,z \rangle = \langle \ell,\varphi_0 \rangle$ and $e=(\ell,\alpha,\varphi,\{y_1,\ldots,y_n\},\ell') \in E$ we have

$$\operatorname{Post}_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

• $\varphi_1 = \varphi_0 \uparrow$

let time elapse starting from $\varphi_0\colon \varphi_1$ represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of $\ell\colon arphi_2$ represents the reachable $\operatorname{good}^{\ell}$ valuations

• $\varphi_3 = \varphi_2 \wedge \varphi$

 $\bullet \ \varphi_4=\varphi_3[y_1:=0]\dots[y_n:=0]$ reset clocks: φ_4 are all possible outcomes of taking e from φ_3 intersect with guard: $arphi_3$ are the reachable $\operatorname{good}^{\ell}$ valuations where e is enabled

• $\varphi_5 = \varphi_4 \wedge I(\ell')$

intersect with invariant of $\ell'\colon \varphi_5$ are the good outcomes of taking e from φ_3

Good news: the following operations can be carried out by manipulating φ . • If z is given by a constraint $\varphi\in\Phi(X)$, then the zone component z' of $\operatorname{Post}_{\kappa}(\ell,z)=\langle\ell',z'\rangle$ should also be a constraint from $\Phi(X)$. (Because sets of clock valuations are soo unhandily...) The elapse time operation: $\uparrow: \Phi(X) \to \Phi(X)$

What is a Good "Post"?

Given a constraint φ , the constraint $\uparrow(\varphi)$, or $\varphi\uparrow$ in postfix notation, is supposed to denote the set of clock valuations

supposed to derive the set of clock valuations
$$\{\nu+t\mid \nu\models\varphi,t\in\mathrm{Time}\}.$$
 In other symbols: we want
$$[\![1][\varphi]]\!]=[\nu+t\mid\nu\in[\![\varphi]\!],t\in\mathrm{Time}\}.$$

diagonals. To this end: remove all upper bounds $x \leq c, \ x < c$ from φ and add

Difference Bound Matrices

• Given a finite set of clocks X , a \mathbf{DBM} over X is a mapping • $M(x,y) = (\sim,c)$ encodes the conjunct $x-y \sim c$ (x and y can be $x_0)$. $M: (X \overset{\mathbf{r}}{\cup} \{x_0\} \times X \overset{\cdot}{\cup} \{x_0\}) \to (\{<, \leq\} \times \mathbb{Z} \cup \{(<, \infty)\})$

28/31

References

30/31

31/31

Difference Bound Matrices

 $\bullet\,$ Given a finite set of clocks X, a DBM over X is a mapping

 $M: (X\mathrel{\dot{\cup}} \{x_0\}\times X\mathrel{\dot{\cup}} \{x_0\}) \to (\{<,\leq\}\times \mathbb{Z} \cup \{(<,\infty)\})$

• $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c$ (x and y can be $x_0).$

• If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute M 1, $M \wedge N$, M[x:=0] such that • all three are again DBM,

• $M\uparrow$ encodes $\varphi_1\uparrow$, • $M\land N$ encodes $\varphi_1\land\varphi_2$, and • M[x:=0] encodes $\varphi_1[x:=0]$.

And there is a canonical form of DBM — canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).

 \bullet Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

Pros and cons

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
 maintains a list of location/zone pairs or
- maintains a list of location/DBM pairs
- confined wrt. size of discrete state space
 avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- Region-based analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
 less dependent on size of discrete state space
 exponential in number of clocks

29/31

References

[Fánzle, 2007] Fránzle, M. (2007). Formale methoden eitgebettetet systeme. Lecture, Summer Semester 2007; Garl-von-Ossietzky Universität Oldenburg. [Oldeng and Dierka, 2008] Oldeng, E.-R. and Oldensk, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.