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Last Lecture:
» Completed Undecidal
© Started to relate TA and DC

y Results for TBA

This Lecture:
» Educational Objectives: Capal s for following tasks/questions.
* How can we relate TA and DC formulae? What's a bit tricky about that?
« Can we use Uppaal to check whether a TA satisfies a DC formula?

« Content:
« An evolution-of-observables semantics of TA
« A satisfaction relation between TA and DC
« Model-checking DC properties with Uppaal

Observahles of TA Network

Wanted: A satisfaction relation between networks of timed automata and DC

formulae, a notion of A" satisfies F, denoted by A |= F.

Plan:
« Consider network A consisting of TA

Aei = (Li, Ci, By, Ui, X3, Vi, I, B,

5 Define observables Obs(A") of V.

"~ Define evolution Z¢ of Obs(A) induced by computation path
g & € CompPaths(N) of N,

CompPaths(') = {€ | € is a computation path of A’}

| e SayNk Fifandonlyif V¢ € CompPaths(N) : T¢ o F.

Let \V' be a network of n extended timed automata

Aci = (Li;Ci, Bi, Ui, Xi, Vi, i, Eiy lini i)

For simpl assume that the L; and X; are pairwise disjoint and that each
V; is pairwise disjoint to every L; and X; (otherwise rename).

« Definition: The observables Obs(\) of A" are
{t,du J v
ﬁ 1<i<n
with cusvect  bocechn. of A,

« D(l;) = L;,
« D(v) as given, v € Vj.

20130710 - mai

Observing Timed Automata

Observables of TA Network: Example

Ae,i = (Li,
The observables Obs(A') of A" are {£1,..., £} UU, ;< Vi with

2 Bi, Ui, Xi, Vi, Iy By ini i)

e D(t:) = Li,
* D(v) as given, v € V;

press?
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Evolutions of TA Network

Evolutions of TA Network: Example

computation path

€= (lo, o), to 25 (Tromn),ty 22 (B vm) 1y 25

of N, 7 denotes a tuple ((},.... (%) € Ly x - x L.
Nk Hee

Given ¢ and t € Time, we use &(t) to denote the set 2 _wstx.s..

(00| FieNg ity <t <tin A=l Av=v+t—t;

of configurations at time ¢.

New: &() denotes @5 1) where j = max{i € No | t; < t kf=tf}.

Our choice:

5 « lgnore configurations assumed for O-time only.

« Extend finite computation paths to infinite length, staying in last

configuration. Nx.&:\&, .G,x_kr\iv

Yet clocks advance — see later.
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Evolutions of TA Network Cont'd

[00) denotes (7.5 + 1 — ;) where j = maxi € Ny | 1. < t b=} |

Example:

off off
e=(%
0

Am.m

)25 =

3,0 22,
B 13

(0) = <off, %-05 press?
(1.0) = Loff, x=0+10-0) %
o £(2.5) = Coff x=2.5>

0Ky
By

off

Tltieds)=§4 3,21

Evolutions of TA Network Cont’d

€= (0,022 (3,25 T (18 25 2, (MY o5 2 () 25 20 (o) 55 1
Abbreviations as usual:
o Te(t)(0) =of
* I(l = off)(0) =1 Jf T(e)o)-IGE)=off
I (10) = T(e,=off) (10)

dale if L; pairwise disjoint.
assedim
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+ But what about clocks? Why not 2 € Obs(\) for x € X;?
« We would know how to define Z¢(x)(t), namely
Ie(a)(t) = Ve (7) + (t— tge)- JEr 7
« But... T(x)(t) changes too often. .
m,.)l; cloke conshianmts
Better (if wanted): \

« add ®(X; U---UX;) to Obs(\),

with D(p) = {0,1} for p € (X, U- - U X;).
* set

L if vla) £ 0. &0) = ()

0, otherwise

Ze(o)(1) = A

The truth value of constraint ¢ can endure over non-point intervals.

1m0

Evolutions of TA Network Cont’d

£ induces the unique interpretation
T : Obs(A) — (Time — D)
of Obs(\) defined pointwise as follows:

Vifa= 10, &) = (0", €. ), v)

.
Essuﬁ W L ifae Vi 60 =0

Example: D(¢;) = {off, light, bright}

)25 L. (DB o5 2, (o) 25 20, (ofT) 35 2.

£=(%N,022% (2,05 2 ¢

light bright
0 0

Time

Same Checlable Properties
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Model-Checlking DC Properties with Uppad

Model-Checlking DC Properties with Uppad Model-Checking Invariants with Uppad

& (=) | EF
P E'F
£
o Quite clear: F =0[P].
i 14
« First Answer: \ |= F if and only if V¢ € CompPaths(\) : Z¢ |=o F. + Second Question: what kinds of DC formulae can we check with Uppaal?  Unfortunately we have in gonsel 1o
. NEOP] 4 NEYOP,

+ Second Question: what kinds of DC formulae can we check with Uppaal? Wanted: Quesves ¢W u

Clear: Not every DC formula « a function f mapping DC formulae to Uppaal (9€-formustaq and but bgeneratmo]

Ao;m.zsmm Szws&nz:m undecidal ty results.) « a transformation = of networks of TA NEyYOP = N 0[P

such that because Uppaal also considers P without duration.
« Quite clear: F = OJoff] or F' = ~0light] e v
Uppaal [(F) == N = F (© VZ€lom (V) o Ty 7, , e i .
(Use Uppaal’s fragment of TCTL, something like VO off, Fuppas ) ¥ ) © Possible fix: measure duration ex|

but not exactly see-tater).)

o Maybe: F=0>5 = O[off]’

itly, transform
z:

Vel t

s
Then check for ' = vO((P A = > 0). ¥ Pzé.

10

One step more general: an additional observer construction O(-) such that

@,,QQVTCNN_\@AEH?TM ts
13, N " W/?G we ij\?t\_v .Nﬂf&.&

 Not so clear: F = —0([bright] ; [light])

8- 2013
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A More Systematic Approach

Testable DC Properties

(or test automaton (or monitor)) Ap gxists such that for all net-
works A = C(Ay,...,A,) it holds tjfat

NEF ff C(AL,..., Ay Ap) = YO ~(AF-Ghaa)

Otherwise it's called untestable.

» We have seen fo, =, and O(-) with

N[ O(F) Fuppaat fo(F) <= N F (+)

for some particular F. Tedious: always have to prove ().

« Better:
o characterise a subset of DC,

© give procedures to construct fo(-), ~.

, *,and O(-)
« prove once and for

Proposition 6.3. There exist untestable DC formulae. _7
| that, if F is in this fragment, then

N || O(F) Fuppaat fo(F) <= N F

0 Sdetest -

Theorem 6.4. DC implementables are testable. _7

« Even better: exact (syntactic) characterisation of the DC fragment that
is testable (not in the lecture).

1973 2073 !
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Untestable DC Formulae Conlia{

¢ 7 e,

;Esl,.r? |- 25 €ty t011]
B
Commdment
¢

Wmu.mw:

“Whenever we observe a change from A to —A at time t4,
the system has to produce a change from B to —B at some time {5 € [ta,ta + 1]
and a change from C to ~C' at time tp + 1.

Sketch of Proof: Assume there is Ay such that, for all networks /', we have

NEF ff CAL..., AL Ap) = VO ~(Ap.que)

Assume the number of clocks in Ap is n € Ny

Untestable DC Formulae Cont’'d

Untestable DC Formulae Cont’'d ~ *
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Consider the following time points:

otgi=1

o tpi=tat ol

o tp €ty 1= 4yt L by [fori=1,.
with 1, —tz #1for 1 <i<n+1.

1
Example: n =3 b b

N

Time

Testable DC Formulae

Example: n =3 <

Because A is a test automaton for F', is has a computation path to gad.

Thus there is 1 < ip < n such that
notin 2 — ¢ + (—

| clocks of A have a valuation which is

)
T D)

Modify the computation to Z” such that 0 :=t3 + 1.

Then 7’ (= F, but Ar reaches g via the same path.
Ap claims ' £ F.

Thus A is not a test automaton. Contradiction.

Theorem 6.4. DC implementables are testable.

« Sequencing: [r] — [rVm V-

Synchronisation:

Bounded Stabil
Unbounded Stability:

o
[r Al =5

Unbounded initial stabil

Proof Sketch:
» For each implementable F, construct Ap.

« Prove that Ay is a test automaton.

y: [~nlifrAg] =5 [rvm V-

[

[~m]s [mA@l—[rVm V.-
[xvm V.-
|

[T A@l—0[rVm V.-

MV [ s true

V]

Progress: [r] = [~
[ A ] < [-m]

SVl

V]
V]
SV

23/
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Untestable DC Formulae Cont'd  *

¢

Example: n =3

asphan sahsfel
s

0 vy B 6y th 2tk 2 gk a3 Time

The shown interpretation 7 satisfies assumption of property.

It has n + 1 candidates to satisfy commitment.

By choice of t(, the commitment is not satisfied; so F not satisfied

Because Ay is a test automaton for F, is has a computation path to geaa.

© Because n = 3, Ar can not save all n + 1 time points ¢3;.

o Thus there is 1 < ip < n such that all clocks of Ay have a valuation which is

not in 2 — ¢ + (— sy a0y

Proof of Theorem 6.4: Preliminaries

0 Sdetest -

» Note: DC does not refer to communication between TA in the network,
but only to data variables and locations

Example:

Feo o(fo=0:fo=1])

« Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

£
V=0 2::0
| humiad cno! et
VO ot v
sves 5 i
o}
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Proof of Theorem 6.4: Preliminaries

Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.
Approach: have auxiliary step action.

Technically, replace each

ti\

by o

bles after the update.

Note: the observer sees the data va
2773
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Proof of Theorem 6.4: Sketch
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« Example: [71] —2 -]

step?,

2831

References

[Olderog and Dierks, 2008] Olderog, E.-R. and
- Formal Specification and Automatic Verification. Cambridge University Press.

ierks, H. (2008). Real-Time Systems

31m

Courterexample Formulae

Definition 6.5.
+ A counterexample formula (CE for short) is a DC formula
of the form:
true; ([m) ALe€ D) ;...; ([mk] ALE Iy); true

where for 1 <i <k,
« m; are state assertions,
» I; are non-empty, and open, half-open, or closed time
intervals of the form
o (be) or [b,e) with b € Qf and e € Qf U {oo
o (b.e] or [b,e] with b,e € QF .
(b,00) and [b, 50) denote unbounded sets.
« Let F be a DC formula. A DC formula Fp is called coun-
terexample formula for F if = F <= —(Fcg) holds.

Theorem 6.7. CE formulae are testable.
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