
Real-Time Systems

Lecture 14: Extended Timed Automata

2013-06-25

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• Decidability of the location reachability problem:

• region automaton

• zones

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• By what are TA extended? Why is that useful?

• What’s an urgent/committed location? What’s the difference?

• What’s an urgent channel?

• Where has the notion of “input action” and “output action”

correspondences in the formal semantics?

• Content:

• Extended TA:
• Data-Variables
• Structuring Facilities
• Restriction of Non-Determinism

• The Logic of Uppaal 2/38

Extended Timed Automata

3/38

Example (Partly Already Seen in Uppaal Demo)

Templates: Extensions:

• Data Variables
(Expressions,
Constraints, Updates)

• Structuring

• Urgent/Committed
Location,
Urgent Channel

• L: off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• U :

U

v := 0

v = 1

v = 0

y := 0
y < 2

press!

v := 1

press!

y > 3

press!

System:

L U

press? press!
x

y

v
chan press

4/38

Data-Variables

• When modelling controllers as timed automata, it is sometimes desirable
to have (local and shared) variables.
E.g. count number of open doors, or intermediate positions of gas valve.

• Adding variables with finite range (possibly grouped into finite arrays) to
any finite-state automata concept is straighforward:

• If we have control locations L0 = {ℓ1, . . . , ℓn},

• and want to model, e.g., the valve range as a variable v with D(v) = {0, . . . , 2},

• then just use L = L0 ×D(v) as control locations, i.e. encode the current

value of v in the control location, and consider updates of v in the
λ
−→.

L is still finite, so we still have a proper TA.

5/38

Data-Variables

• When modelling controllers as timed automata, it is sometimes desirable
to have (local and shared) variables.
E.g. count number of open doors, or intermediate positions of gas valve.

• Adding variables with finite range (possibly grouped into finite arrays) to
any finite-state automata concept is straighforward:

• If we have control locations L0 = {ℓ1, . . . , ℓn},

• and want to model, e.g., the valve range as a variable v with D(v) = {0, . . . , 2},

• then just use L = L0 ×D(v) as control locations, i.e. encode the current

value of v in the control location, and consider updates of v in the
λ
−→.

L is still finite, so we still have a proper TA.

• But: writing
λ
−→ is tedious.

• So: have variables as “first class citizens” and let compilers do the work.

• Interestingly, many examples in the literature live without variables: the
more abstract the model is, i.e., the fewer information it keeps track of
(e.g. in data variables), the easier the verification task.

5/38

Data Variables and Expressions

• Let (v, w ∈) V be a set of (integer) variables.

(ψint ∈) Ψ(V): integer expressions over V using func. symb. +,−, . . .

(ϕint ∈) Φ(V): integer (or data) constraints over V
using integer expressions, predicate symbols =, <,≤, . . . , and
boolean logical connectives.

• Let (x, y ∈) X be a set of clocks.

(ϕ ∈) Φ(X,V): (extended) guards, defined by

ϕ ::= ϕclk | ϕint | ϕ1 ∧ ϕ2

where ϕclk ∈ Φ(X) is a simple clock constraint (as defined before)
and ϕint ∈ Φ(V) an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(a) x < y ∧ v > 2, (b) x < y ∨ v > 2, (c) v < 1 ∨ v > 2, (d) x < v

6/38

Modification or Reset Operation

• New: a modification or reset (operation) is

x := 0, x ∈ X,

or

v := ψint , v ∈ V, ψint ∈ Ψ(V).

• By R(X,V) we denote the set of all resets.

• By ~r we denote a finite list 〈r1, . . . , rn〉, n ∈ N0,
of reset operations ri ∈ R(X,V);
〈〉 is the empty list.

• By R(X,V)∗ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?

(a) x := y, (b) x := v, (c) v := x, (d) v := w, (e) v := 0

7/38

Structuring Facilities

global decl.: clocks, variables, channels, constants

A1 A2 A3

A4
A5

local

decl.

b!
c! c?

a!

d?

a?

d! b?

b? b?

broadcast chan b

chan c
chan a

chan d

• Global declarations of of clocks, data variables, channels, and constants.

• Binary and broadcast channels: chan c and broadcast chan b.

• Templates of timed automata.

• Instantiation of templates (instances are called process).

• System definition: list of processes.

8/38

Restricting Non-determinism

• Urgent locations — enforce local immediate progress.

U

• Committed locations — enforce atomic immediate progress.

C

• Urgent channels — enforce cooperative immediate progress.

urgent chan press;

9/38

Urgent Locations: Only an Abbreviation...

Replace

ℓ

urgent
with ℓ

ϕ ϕ ∧ z = 0

z := 0

z := 0

where z is a fresh clock:

• reset z on all in-going egdes,

• add z = 0 to invariant.

Question: How many fresh clocks do we need in the worst case for a network
of N extended timed automata?

10/38

Extended Timed Automata

Definition 4.39. An extended timed automaton is a structure

Ae = (L,C,B, U,X, V, I, E, ℓini)

where L,B,X, I, ℓini are as in Def. 4.3, except that location in-
variants in I are downward closed, and where

• C ⊆ L: committed locations,

• U ⊆ B: urgent channels,

• V : a set of data variables,

• E ⊆ L×B!? × Φ(X,V)×R(X,V)∗ × L: a set of directed
edges such that

(ℓ, α, ϕ, ~r, ℓ′) ∈ E ∧ chan(α) ∈ U =⇒ ϕ = true.

Edges (ℓ, α, ϕ, ~r, ℓ′) from location ℓ to ℓ′ are labelled with an
action α, a guard ϕ, and a list ~r of reset operations.

11/38

Operational Semantics of Networks

Definition 4.40. Let Ae,i = (Li, Ci, Bi, Ui, Xi, Vi, Ii, Ei, ℓini,i),
1 ≤ i ≤ n, be extended timed automata with pairwise disjoint sets
of clocks Xi.
The operational semantics of C(Ae,1, . . . ,Ae,n) (closed!) is the
labelled transition system

Te(C(Ae,1, . . . ,Ae,n))

= (Conf ,Time ∪ {τ}, {
λ
−→| λ ∈ Time ∪ {τ}}, Cini)

where
• X =

⋃n

i=1
Xi and V =

⋃n

i=1
Vi,

• Conf = {〈~ℓ, ν〉 | ℓi ∈ Li, ν : X ∪ V → Time, ν |=
∧n

k=1
Ik(ℓk)},

• Cini = {〈~ℓini , νini〉} ∩ Conf ,

and the transition relation consists of transitions of the following
three types.

12/38

Helpers: Extended Valuations and Timeshift

• Now: ν : X ∪ V → Time ∪ D(V)

• Canonically extends to ν : Ψ(V) → D (valuation of expression).

• “|=” extends canonically to expressions from Φ(X,V).

13/38

Helpers: Extended Valuations and Timeshift

• Now: ν : X ∪ V → Time ∪ D(V)

• Canonically extends to ν : Ψ(V) → D (valuation of expression).

• “|=” extends canonically to expressions from Φ(X,V).

• Extended timeshift ν + t, t ∈ Time, applies to clocks only:

• (ν + t)(x) := ν(x) + t, x ∈ X ,

• (ν + t)(v) := ν(v), v ∈ V .

• Effect of modification r ∈ R(X,V) on ν, denoted by ν[r]:

ν[x := 0](a) :=

{

0, if a = x,

ν(a), otherwise

ν[v := ψint](a) :=

{

ν(ψint), if a = v,

ν(a), otherwise

• We set ν[〈r1, . . . , rn〉] := ν[r1] . . . [rn] = (((ν[r1])[r2]) . . .)[rn].

13/38

Operational Semantics of Networks: Internal Transitions

• An internal transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉 occurs if there is i ∈ {1, . . . , n}

such that

• there is a τ -edge (ℓi, τ, ϕ, ~r, ℓ
′

i) ∈ Ei,

• ν |= ϕ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i],

• ν′ = ν[~r],

• ν′ |= Ii(ℓ
′

i),

• (♣) if ℓk ∈ Ck for some k ∈ {1, . . . , n} then ℓi ∈ Ci.

14/38

Operational Semantics of Networks: Synchronisation Transitions

• A synchronisation transition 〈~ℓ, ν〉
τ
−→ 〈~ℓ′, ν′〉 occurs if there are

i, j ∈ {1, . . . , n} with i 6= j such that

• there are edges (ℓi, b!, ϕi, ~ri, ℓ
′

i) ∈ Ei and (ℓj , b?, ϕj, ~rj , ℓ
′

j) ∈ Ej ,

• ν |= ϕi ∧ ϕj ,

• ~ℓ′ = ~ℓ[ℓi := ℓ′i][ℓj := ℓ′j],

• ν′ = ν[~ri][~rj],

• ν′ |= Ii(ℓ
′

i) ∧ Ij(ℓ
′

j),

• (♣) if ℓk ∈ Ck for some k ∈ {1, . . . , n} then ℓi ∈ Ci or ℓj ∈ Cj .

15/38

Operational Semantics of Networks: Delay Transitions

• A delay transition 〈~ℓ, ν〉
t
−→ 〈~ℓ, ν + t〉 occurs if

• ν + t |=
∧n

k=1
Ik(ℓk),

• (♣) there are no i, j ∈ {1, . . . , n} and b ∈ U with
(ℓi, b!, ϕi, ~ri, ℓ

′

i) ∈ Ei and (ℓj , b?, ϕj , ~rj, ℓ
′

j) ∈ Ej ,

• (♣) there is no i ∈ {1, . . . , n} such that ℓi ∈ Ci.

16/38

Restricting Non-determinism: Example

p0

p1

p2

P

x := 0

b?

q0

q1

q2 q3

Q

y := 0, v := 1

b!, v := 2 v := 3

r0

r1

R

w := v

Property 1 Property 2 Property 3

∃♦w = 1 ∀�Q.q1 =⇒ y ≤ 0 ∀�(P .p1 ∧ Q.q1 =⇒

(x ≥ y =⇒ y ≤ 0))

N := P‖Q‖R

N , q1 urgent

N , q1 comm.

N , b urgent
17/38

Restricting Non-determinism: Urgent Location

p0

p1

p2

P

x := 0

b?

q0

q1

q2 q3

Q

y := 0, v := 1

b!, v := 2 v := 3

r0

r1

R

w := v

Property 1 Property 2 Property 3

∃♦w = 1 ∀�Q.q1 =⇒ y ≤ 0 ∀�(P .p1 ∧ Q.q1 =⇒

(x ≥ y =⇒ y ≤ 0))

N 4 8 8

N , q1 urgent

N , q1 comm.

N , b urgent
18/38

Restricting Non-determinism: Committed Location

p0

p1

p2

P

x := 0

b?

q0

q1

q2 q3

Q

y := 0, v := 1

b!, v := 2 v := 3

r0

r1

R

w := v

Property 1 Property 2 Property 3

∃♦w = 1 ∀�Q.q1 =⇒ y ≤ 0 ∀�(P .p1 ∧ Q.q1 =⇒

(x ≥ y =⇒ y ≤ 0))

N 4 8 8

N , q1 urgent 4 4 4

N , q1 comm.

N , b urgent
19/38

Restricting Non-determinism: Urgent Channel

p0

p1

p2

P

x := 0

b?

q0

q1

q2 q3

Q

y := 0, v := 1

b!, v := 2 v := 3

r0

r1

R

w := v

Property 1 Property 2 Property 3

∃♦w = 1 ∀�Q.q1 =⇒ y ≤ 0 ∀�(P .p1 ∧ Q.q1 =⇒

(x ≥ y =⇒ y ≤ 0))

N 4 8 8

N , q1 urgent 4 4 4

N , q1 comm. 8 4 4

N , b urgent
20/38

Extended vs. Pure Timed Automata

21/38

Extended vs. Pure Timed Automata

Ae = (L,C,B, U,X, V, I, E, ℓini)

(ℓ, α, ϕ, ~r, ℓ′) ∈ L×B!? × Φ(X,V)×R(X,V)∗ × L

vs.

A = (L,B,X, I, E, ℓini)

(ℓ, α, ϕ, Y, ℓ′) ∈ E ⊆ L×B?! × Φ(X)× 2X × L

• Ae is in fact (or specialises to) a pure timed automaton if

• C = ∅,

• U = ∅,

• V = ∅,

• for each ~r = 〈r1, . . . , rn〉, every ri is of the form x := 0 with x ∈ X .

• I(ℓ), ϕ ∈ Φ(X) is then a consequence of V = ∅.

22/38

Operational Semantics of Extended TA

Theorem 4.41. If A1, . . . ,An specialise to pure timed au-
tomata, then the operational semantics of

C(A1, . . . ,An)

and

chan b1, . . . , bm • (A1 ‖ . . . ‖ An),

where {b1, . . . , bm} =
⋃n

i=1
Bi, coincide, i.e.

Te(C(A1, . . . ,An)) = T (chan b1, . . . , bm • (A1 ‖ . . . ‖ An)).

23/38

Reachability Problems for Extended Timed Automata

24/38

Recall

Theorem 4.33. [Location Reachability] The location reachability
problem for pure timed automata is decidable.

Theorem 4.34. [Constraint Reachability] The constraint reacha-
bility problem for pure timed automata is decidable.

• And what about tea ^W extended timed automata?

25/38

References

37/38

References

Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

38/38

