— 03 — 2013-04-23 — main —

Real-Time Systems

Lecture 03: Duration Calculus |

2013-04-23

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 03 — 2013-04-23 — Sprelim —

Last Lecture:

Model of timed behaviour: state variables and their interpretation

First order predicate-logic for requirements and system properties

This Lecture:
Educational Objectives: Capabilities for following tasks/questions.

Read (and at best also write) Duration Calculus formulae.

Content:
Classes of requirements (safety, liveness, etc.)

Duration Calculus:
Assertions, Terms, Formulae, Abbreviations, Examples

2/42



— 03 — 2013-04-23 — main

Recall: Correctness

Recall: Correctness

— 03 — 2013-04-23 — Scorr —

Let ‘Req’ be a requirement,
‘Des’ be a design, and

‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of (Time — x?le(obsi)),
described in any form.

We say
‘Des’ is a correct design (wrt. ‘Req’) if and only if
Des C Req.
‘Impl" is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if
Impl C Des (or Impl C Req)

If ‘Req’ and ‘Des’ are described by formulae of first-oder predicate logic,
proving the design correct amounts to proving that ‘Des = Req’ is valid.

3/'42

442



— 03 — 2013-04-23 — main

Safety Properties

Classes of Timed Properties

IxeM : x%0

— 03 — 2013-04-23 — Sclasses —

Vx EX/. v30
A safety property states that VxéA/O 20

5/42

something bad must never happen [Lamport].

Example: train inside level crossing with gates open.
¢, D(C)=10,1}
More general, assume observable C' : Time — {0, 1} where C(t) =1
represents a criticall system state at time ¢.
o bl *

Vte Timee —\C(t)

Then

is a safety property.

In general, a safety property is characterised as a property that can be
falsified in bounded time.

But safety is not everything...

6/42



Liveness Properties

— 03 — 2013-04-23 — Sclasses —

The simplest form of a liveness property states that
something good eventually does happen.

Example: gates open for road traffic.

More general, assume observable G : Time — {0,1} where G(¢) =1
represents a good system state at time ¢.

Then
It € Time e G(t)

is a liveness property.

Note: not falsified in finite time.

With real-time, liveness is too weak...

7/'42

Bounded Response Properties

— 03 — 2013-04-23 — Sclasses —

A bounded response property states that
the desired reaction on an input occurs in time interval [b, e].

Example: from request to secure level crossing to gates closed.

More general, re-consider good thing G : Time — {0, 1} and request
R :Time — {0,1}.
Then
b e
Vit1 € Timee (R(tl) — dty € [tl + m,tl + %] ° G(tg))

is a bounded liveness property.

This property can again be falsified in finite time.

With gas burners, this is still not everything...

8/42



Duration Properties

— 03 — 2013-04-23 — Sclasses —

A duration property states that
for observation interval [b, €] characterised by a condition A(b, e
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, ).

Example: leakage in gas burner.

9/'42

Duration Properties

— 03 — 2013-04-23 — Sclasses —

A duration property states that
for observation interval [b, €] characterised by a condition A(b,e)
the accumulated time in which the system is in a certain critical
state has an upper bound u(b, e).

Example: leakage in gas burner. Ricwviscn ““%-"/

More general, re-consider critical thing C' : Time — {0, 1}.

Then
Vb,e € Timee <A(b,e) = C(t) dt < u(b,e))
NN~ AN A~

is a duration property.

This property can again be falsified in finite time.

e et Ale):= e-b 260

v (blt) -5 %"Di hi i%(g-L)

9/42



— 03 — 2013-04-23 — main

Duration Calculus

Duration Calculus; Preview

— 03 — 2013-04-23 — Sdcpreview —

Duration Calculus is an interval logic.

Formulae are evaluated in an (implicitly given) interval.

gas valve
flame sensor

Back to our gas burner:

G,F,1,H : Time — {0,1}
Define L : Time — {0,1} as G A —F. B
Strangest operators: ition i

w\
evaéry(:/\Slhere — Example: [G]

(Holds in a given interval [b, ] iff the gas valve is open almost everywhere.)

chop — Example: ([=I][I];[~]) = £>1
(Ignition phases last at least one time unit.)

integral — Example: € > 60 = fL < %

(At most 5% leakage time within intervals of at least 60 time units.)

10/'42

1142



Duration Calculus; Overview

— 03 — 2013-04-23 — Sdcsymb —

(754-/ Vdcialdes
chohe var'«b/es

We will introduce three (or five) syntactical “levels”:

(i) Symbols:

0u=x|e|[B]f01,....0.) 7feu R

[-,
|—|F1|F1/\F2|V$OF1|FE3\'614 #/%

[, [P1, [P, [P]¥, OF, OF

(v) Abbreviations:

12/42
Symbols: Syntax
o f,g: function symbols, each with arity n € INg.
Called constant if n = 0.
Assume: constants 0, 1, --- € INg; binary ‘+' and *-'y ‘A!mg:j sywéo/ j
kw,:z \Vl=3
e p,q: predicate symbols, also with arity.
Assume: constants true, false; binary =, <, >, <, >.
e x,%,2z € GVar: global variables.
o X,Y,Z € Obs: state variables or observables, each of a data type D
(or D(X),D(Y),D(Z) to be precise). eg- T
i Called boolean observable if data type is {0,1}. @(T)-'{m(,a;«u,\lﬁ{hj
; o d: elements taken from data types D of observables.
9 ed
g L
; ey

13/42



Symbols. Semantics

Semantical domains are
the truth values B = {tt, ff},
the real numbers R,

time Time,
(mostly Time = R (continuous), exception Time = INg (discrete time))

and data types D.
The semantics of an n-ary function symbol f
is a (mathematical) function from R™ to R, denoted f, i.e.
f:R™ - R.

The semantics of an n-ary predicate symbol p
is a function from R™ to IB, denoted p, i.e.

p:R" — B.

For constants (arity n = 0) we have f € R and € B.

— 03 — 2013-04-23 — Sdcsymb —

14/'42
Symbols: Examples
The semantics of the function and predicate symbols assumed above
is fixed throughout the lecture: f 3
n=
true = tt, faise = ff f le - )R
~ . 2urrtatan
0 € R is the (real) number zero, etc. ny choie: md ,;;pb
X . - be)P >
bt F :R2 — R is the addition of real numbers, etc. (4 c)"_ . w2
b if by as
NQ’IL‘ é . 2 . . . -
N : R — B is the equality relation on real numbers, /02;{
. < :R2 — B is the less-than relation on real numbers, etc.
@ mx(, .
“Since the semantics is the expected one, we shall often S|mply use the
symbols 0,1, +, -, =, < when we mean their semantics 0,1, 4,%, =, <.”

you chate Waybe - AV~
g, m-é:#c
DI

— 03 — 2013-04-23 — Sdcsymb —

15/42



Symbols. Semantics

mb

The semantics of a global variable is not fixed (throughout the lecture)
but given by a valuation, i.e. a mapping

V:GVar — R
assigning each global variable x € GVar a real number V(z) € R.
We use Val to denote the set of all valuations, i.e. Val = (GVar — R).

Global variables are though fixed over time in system evolutions.

The semantics of a state variable is time-dependent.
It is given by an interpretation Z, i.e. a mapping

Z : Obs — (Time — D)
TCT) Tine 20 7,

assigning each state variable X € Obs a function

_ Jedbu|
g Z(X) : Time — D(X) J{T)( B,22) = red
% such that Z(X)(t) € D(X) denotes the value that X has at time ¢ € Time.
i 16/42
Symbols: Representing State Variables
For convenience, we shall abbreviate Z(X) to X7: Tike ﬁ@“} ey
.T
T

— 03 — 2013-04-23 — Sdcsymb —

An interpretation (of a state variable) can be displayed in form of a
. . . T
timing diagram. au/

For instance,

d, i £elos)
Xz &)= * afc’e((,i}

Xz:  D(X) «€>)9
dy o c—e J" otessioide




Duration Calculus; Overview

— 03 — 2013-04-23 — Sdcstass

We will introduce three (or five) syntactical “levels”:

(i) Symbols:
fr9, true, false,=,<,>,<,>, =z,y,2, X, Y, Z, d
(i) State Assertions:
Pu=0|1|X=d|-P|P AP,
(iii) Terms:
Ou=az|l]|[P] f(b,...,0,)
(iv) Formulae:
Fu=p(b1,....00) | ~Fi | FEAF |VaeFy | Fii Fy
(v) Abbreviations:

[1, [P1, [P, [P1=', OF OF

Sate Assertions: Syntax 4, ehed oo W/

— 03 — 2013-04-23 — Sdcstass

The set of state assertions/is defined by the following grammar:

Pu=0|1|X<=d|aB |BAR

with d € D(X). m{: EM) (F 1)
We shall use P,Q, R to denote state assertions.
[x,43,X°, XO

Abbreviations:
We shall write X instead of X =1 if D(X) =8.{91]
Define V, =, <= as usual.

1842

19/42



Sate Assertions: Semantics

— 03 — 2013-04-23 — Sdcstass —

8 Grew am evolha. T

The semantics of state assertion P is a function
/I\/[[fj : Time — {0,1}
i.e. Z[P](t) denotes the truth value of P at time ¢t € Time.
The value is defined inductively on the structure of P:
T[0)(t) = 0 €R, 0-0% b
I[1(t) =1 =1e R

He . a
K lag |
—} 1, u{ XI'({)‘_‘{

1[-Pi(t) =1- TLRI(¢)
{4 A TIR3k) - TCADK =1

0 . oladise

I[P, A Po] (1)

20/42

State Assertions: Notes by 4f o pre sbde

2013-04-23 — Sdcstass

— 03—

TIXI0) = TIX =000 = Z(X) (1) < Xz(0), if X boolean, ie. Ak ) =915

akbrev. abbeev.
Z[P] is also called interpretation of P.

We shall write Pz for it.

Here we prefer 0 and 1 as boolean values (instead of tt and ff) — for
reasons that will become clear immediately.

21/42



Sate Assertions. Example

— 03 — 2013-04-23 — Sdcstass —

— 03 — 2013-04-23 — main —

abbrev. for (6=4)a(F=1)

Boolean observables GG and F'.
State assertion L := G A\ —=F), S’»‘l_ vanalles ?—:é
‘_/_J
]w)u‘mf:‘k“mq

bf Gt

stode

4 Time

w +

T 16- 0 112 2
L7(1.2) =1, because

TLLY(42)=TLGAFD(12)- TC 6312 F10(12)=1

TLG=1300=1 becuwse I(6)(12=1-7,
TLF13(12):0 bemwe I(F)(12)=0%1-1

Lz(2) =0, because Il[ﬂ(?f‘?w{?-l)"!—IZT‘/J('!)= 7_0/_1

22/12

References

41/42



— 03 — 2013-04-23 — main —

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

42/42



