
Nested Word Automata

Jens Stimpfle

30.6.2014

Nested Words

I Theoretically and practically pleasant model for the
representation of data with both:

I a linear ordering
I a hierarchically nested matching

I Applications in software verification and document processing

I This is the last list item

Nested Words
I Theoretically and practically pleasant model for the

representation of data with both:
I a linear ordering
I a hierarchically nested matching

I Applications in software verification and document processing

I This is the last list item

Nested Words
I Theoretically and practically pleasant model for the

representation of data with both:
I a linear ordering
I a hierarchically nested matching

I Applications in software verification and document processing

I This is the last list item

Nested Words
I Theoretically and practically pleasant model for the

representation of data with both:
I a linear ordering
I a hierarchically nested matching

I Applications in software verification and document processing

I This is the last list item

Structure of this talk

1. Motivation

2. Nested words

3. Nested word automata

Section 1

Motivation

Subsection 1

Data with both linear ordering and hierarchically nested
matching

1. Document trees (e.g. HTML)

2. Executions of structured programs (with call-return semantics)

Document trees (e.g. HTML)

"Hello" "Hello, World!"

h1 p

"Hello"

title

head body

html

Executions of structured programs (with call-return
semantics)

main()

countToZero(1)

countToZero(0)printLn("1")

printLn("0")

Subsection 2

Formal Languages

I Regular Languages

I Context-Free Languages

Regular Languages

Regular language over an alphabet Σ
I Most easily explained as generated by a regular expression

(RE)
I Example RE: 0|[123456789][0123456789]*

I Typical implementation: DFA (Deterministic Finite
Automaton)

Regular Languages

Regular language over an alphabet Σ
I Most easily explained as generated by a regular expression

(RE)
I Example RE: 0|[123456789][0123456789]*
I Typical implementation: DFA (Deterministic Finite

Automaton)

“Problems” with Regular Languages

I Can’t express arbitrarily deep nesting

Context-free Languages

Context-free language over Σ

I Superset of Regular Languages

I Most easily explained as generated by a Context-free
Grammar (CFG)

I terminal symbols Σ and non-terminal symbols V
I start symbol S ∈ V
I Productions ⊂ V × (V ∪ Σ)∗

I Example for real world usage:

HTML : "<html>" BODY "</html>"

BODY : "<body>" CONTENT "</html>"

CONTENT : "Hello, world!" | "Hallo, Welt!"

I Typical implementation: Pushdown Automaton

Context-free Languages

Context-free language over Σ

I Superset of Regular Languages
I Most easily explained as generated by a Context-free

Grammar (CFG)
I terminal symbols Σ and non-terminal symbols V
I start symbol S ∈ V
I Productions ⊂ V × (V ∪ Σ)∗

I Example for real world usage:

HTML : "<html>" BODY "</html>"

BODY : "<body>" CONTENT "</html>"

CONTENT : "Hello, world!" | "Hallo, Welt!"

I Typical implementation: Pushdown Automaton

Context-free Languages

Context-free language over Σ

I Superset of Regular Languages
I Most easily explained as generated by a Context-free

Grammar (CFG)
I terminal symbols Σ and non-terminal symbols V
I start symbol S ∈ V
I Productions ⊂ V × (V ∪ Σ)∗

I Example for real world usage:

HTML : "<html>" BODY "</html>"

BODY : "<body>" CONTENT "</html>"

CONTENT : "Hello, world!" | "Hallo, Welt!"

I Typical implementation: Pushdown Automaton

Context-free Languages

Context-free language over Σ

I Superset of Regular Languages
I Most easily explained as generated by a Context-free

Grammar (CFG)
I terminal symbols Σ and non-terminal symbols V
I start symbol S ∈ V
I Productions ⊂ V × (V ∪ Σ)∗

I Example for real world usage:

HTML : "<html>" BODY "</html>"

BODY : "<body>" CONTENT "</html>"

CONTENT : "Hello, world!" | "Hallo, Welt!"

I Typical implementation: Pushdown Automaton

“Problems” with Context-free Languages

I Not closed under intersection

I Not closed under complementation

I Not closed under difference

I Can’t decide inclusion

I Can’t decide equivalence

I Not determinizable (Deterministic Context-free languages are
a strict subset of Context-free languages)

“Problems” with Context-free Languages

I Not closed under intersection

I Not closed under complementation

I Not closed under difference

I Can’t decide inclusion

I Can’t decide equivalence

I Not determinizable (Deterministic Context-free languages are
a strict subset of Context-free languages)

“Problems” with Context-free Languages

I Not closed under intersection

I Not closed under complementation

I Not closed under difference

I Can’t decide inclusion

I Can’t decide equivalence

I Not determinizable (Deterministic Context-free languages are
a strict subset of Context-free languages)

Nested words

I Nested words were constructed to overcome the limitations of
Context-free and Regular languages

I The class of nested word languages lies properly between
deterministic context-free languages and Regular languages

Regular languages

Nested word languages

Deterministic context-free languages

Context-free languages

Section 2

Nested words

Nested words are ordinary words with extra information:

The nesting structure is explicitly contained in the input.

⇒ automata for nested words need not parse the nesting.

Definition: Nested word

I Later!

I For now: well-matched nested words

Definition: Well-matched nested word

A well-matched nested word over an alphabet Σ is a pair
(a1 . . . an,)

I a1 . . . an ∈ Σ∗ is a word over Σ
I The matching matches “start tags” with their “end tags”:

I ⊂ [1..n]× [1..n]
I Given (i , j) 6= (k, l) elements of , either i < j < k < l or

i < k < l < j

For (i , j) ∈ , i is a call position and j is a return position

Definition: Well-matched nested word

A well-matched nested word over an alphabet Σ is a pair
(a1 . . . an,)

I a1 . . . an ∈ Σ∗ is a word over Σ

I The matching matches “start tags” with their “end tags”:
I ⊂ [1..n]× [1..n]
I Given (i , j) 6= (k, l) elements of , either i < j < k < l or

i < k < l < j

For (i , j) ∈ , i is a call position and j is a return position

Definition: Well-matched nested word

A well-matched nested word over an alphabet Σ is a pair
(a1 . . . an,)

I a1 . . . an ∈ Σ∗ is a word over Σ
I The matching matches “start tags” with their “end tags”:

I ⊂ [1..n]× [1..n]
I Given (i , j) 6= (k , l) elements of , either i < j < k < l or

i < k < l < j

For (i , j) ∈ , i is a call position and j is a return position

Well-matched

N E S T E D

Not well-matched

N E S T E D

Not well-matched

N E S T E D

Example: Simple HTML tree

HTML /HTMLHEAD /HEAD BODY /BODY"Hello, world"

Example: Simple HTML tree

HTML /HTML

HEAD /HEAD BODY /BODY

"Hello, world"

Example: Process trace

main() (main)countDown(1) (countDown)print(1) countDown(0) (countDown)print(0)(print) (print)

Example: Process trace

main() (main)

countDown(1) (countDown)

print(1) (print) countDown(0) (countDown)

print(0) (print)

Section 3

Nested Word Automata (NWA)

A Nested Word Automaton takes a nested word as input and (as
automatons do) accepts or rejects it.

Nested word automata have much of the power of Pushdown
Automata, but can take advantage of the fact that their inputs
carry a “pre-parsed” hierarchical structure.

A Nested Word Automaton takes a nested word as input and (as
automatons do) accepts or rejects it.

Nested word automata have much of the power of Pushdown
Automata, but can take advantage of the fact that their inputs
carry a “pre-parsed” hierarchical structure.

Definition: Deterministic Nested word automaton

Definition: A deterministic nested word automaton (DNWA) over
an alphabet Σ is a structure

(Q, Q0, Qf // linear states, initial, accepting
, P, P0, Pf // hierarchical states, initial, accepting
, δc , δi , δr // transitions: call, internal, return
)

where Q and P are sets of symbols,

Q0 ∈ Q, P0 ∈ P, Qf ⊂ Q,
Pf ⊂ P, and the three δ are transition functions

δc ⊂ (Σ× Q) 7→ (Q × P)
δi ⊂ (Σ× Q) 7→ Q
δr ⊂ (Σ× Q × P) 7→ Q

Definition: Deterministic Nested word automaton

Definition: A deterministic nested word automaton (DNWA) over
an alphabet Σ is a structure

(Q, Q0, Qf // linear states, initial, accepting
, P, P0, Pf // hierarchical states, initial, accepting
, δc , δi , δr // transitions: call, internal, return
)

where Q and P are sets of symbols, Q0 ∈ Q, P0 ∈ P, Qf ⊂ Q,
Pf ⊂ P,

and the three δ are transition functions

δc ⊂ (Σ× Q) 7→ (Q × P)
δi ⊂ (Σ× Q) 7→ Q
δr ⊂ (Σ× Q × P) 7→ Q

Definition: Deterministic Nested word automaton

Definition: A deterministic nested word automaton (DNWA) over
an alphabet Σ is a structure

(Q, Q0, Qf // linear states, initial, accepting
, P, P0, Pf // hierarchical states, initial, accepting
, δc , δi , δr // transitions: call, internal, return
)

where Q and P are sets of symbols, Q0 ∈ Q, P0 ∈ P, Qf ⊂ Q,
Pf ⊂ P, and the three δ are transition functions

δc ⊂ (Σ× Q) 7→ (Q × P)
δi ⊂ (Σ× Q) 7→ Q
δr ⊂ (Σ× Q × P) 7→ Q

Definition: DNWA: Run

The run of a DNWA over a nested word (a1..an,) is defined as

I A sequence qi for i ∈ [1, n]

I And a sequence pi for all call positions i

so that for i ∈ [1, n] it holds that:

I if i is a call position, then δc(ai , qi−1) = (qi , pi)

I else if i is an internal position, then δi (ai , qi−1) = qi
I else if i is a return position (let h be its corresponding call

position), then δr (ai , qi−1, ph) = qi

Informally: qi is the linear trace and pi the hierarchical trace.

The run is always uniquely and well-defined (after adding
transitions to a black hole state where the transition functions are
undefined)

Definition: DNWA: Run

The run of a DNWA over a nested word (a1..an,) is defined as

I A sequence qi for i ∈ [1, n]

I And a sequence pi for all call positions i

so that for i ∈ [1, n] it holds that:

I if i is a call position, then δc(ai , qi−1) = (qi , pi)

I else if i is an internal position, then δi (ai , qi−1) = qi
I else if i is a return position (let h be its corresponding call

position), then δr (ai , qi−1, ph) = qi

Informally: qi is the linear trace and pi the hierarchical trace.

The run is always uniquely and well-defined (after adding
transitions to a black hole state where the transition functions are
undefined)

Definition: DNWA: Run

The run of a DNWA over a nested word (a1..an,) is defined as

I A sequence qi for i ∈ [1, n]

I And a sequence pi for all call positions i

so that for i ∈ [1, n] it holds that:

I if i is a call position, then δc(ai , qi−1) = (qi , pi)

I else if i is an internal position, then δi (ai , qi−1) = qi
I else if i is a return position (let h be its corresponding call

position), then δr (ai , qi−1, ph) = qi

Informally: qi is the linear trace and pi the hierarchical trace.

The run is always uniquely and well-defined (after adding
transitions to a black hole state where the transition functions are
undefined)

Definition: DNWA: Run

The run of a DNWA over a nested word (a1..an,) is defined as

I A sequence qi for i ∈ [1, n]

I And a sequence pi for all call positions i

so that for i ∈ [1, n] it holds that:

I if i is a call position, then δc(ai , qi−1) = (qi , pi)

I else if i is an internal position, then δi (ai , qi−1) = qi
I else if i is a return position (let h be its corresponding call

position), then δr (ai , qi−1, ph) = qi

Informally: qi is the linear trace and pi the hierarchical trace.

The run is always uniquely and well-defined (after adding
transitions to a black hole state where the transition functions are
undefined)

Definition: DNWA: Acceptance

A DNWA accepts a nested word if the run over it ends in an
accepting linear state:

Let A be a DNWA with accepting linear states Qf , and let
(q1..n, p1..m) be the run of A over a nested word w .
Then A accepts w iff qn ∈ Qf .

Example: Nested word automaton

Task: Given Σ = {[, (,],)}, build an acceptor for the language of
properly balanced parentheses.

Q = {q}
Q0 = q
Qf = {q}
P = Σ ∪̇ {⊥}
P0 = ⊥
Pf = {⊥}
δc = { ((, q) 7→ (q, (), ([, q) 7→ (q, [) }
δr = { (), q, () 7→ q, (], q, [) 7→ q }
δi = ∅

Example: Nested word automaton

Task: Given Σ = {[, (,],)}, build an acceptor for the language of
properly balanced parentheses.

Q = {q}
Q0 = q
Qf = {q}

P = Σ ∪̇ {⊥}
P0 = ⊥
Pf = {⊥}
δc = { ((, q) 7→ (q, (), ([, q) 7→ (q, [) }
δr = { (), q, () 7→ q, (], q, [) 7→ q }
δi = ∅

Example: Nested word automaton

Task: Given Σ = {[, (,],)}, build an acceptor for the language of
properly balanced parentheses.

Q = {q}
Q0 = q
Qf = {q}
P = Σ ∪̇ {⊥}
P0 = ⊥
Pf = {⊥}

δc = { ((, q) 7→ (q, (), ([, q) 7→ (q, [) }
δr = { (), q, () 7→ q, (], q, [) 7→ q }
δi = ∅

Example: Nested word automaton

Task: Given Σ = {[, (,],)}, build an acceptor for the language of
properly balanced parentheses.

Q = {q}
Q0 = q
Qf = {q}
P = Σ ∪̇ {⊥}
P0 = ⊥
Pf = {⊥}
δc = { ((, q) 7→ (q, (), ([, q) 7→ (q, [) }
δr = { (), q, () 7→ q, (], q, [) 7→ q }
δi = ∅

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

Remarks

The last example is actually a showcase example for Pushdown
automata.

Important differences of NWAs:

I The nesting structure is in the input nested word, not parsed
at run-time.

I The NWA has only an implicit stack. The stack manipulation
type (push, pop, nothing) at each input symbol is only a
function of the nesting structure.

I Push: exactly one element per call position.

I Pop: exactly one element per return position.

I Reading the stack only when popping (returning).

With these restrictions, processing a nested word takes place in
fixed linear time and space.

This is the last slide.

