Star height of regular languages

Thomas Lang

14 July 2014

Overview

(1) Introduction
(2) Star height
(3) BMC algorithm
(4) Loop complexity
(5) Connection between star height and loop complexity
(6) References

Overview

(1) Introduction

(2) Star height

(3) BMC algorithm

4 Loop complexity
(5) Connection between star height and loop complexity

6 References

Motivation

Motivation

- Let L_{1}, L_{2} be regular languages.

Motivation

- Let L_{1}, L_{2} be regular languages.
- Aim: Give meaning to the statement
L_{1} is more complicated than L_{2}.

Motivation

- Let L_{1}, L_{2} be regular languages.
- Aim: Give meaning to the statement

L_{1} is more complicated than L_{2}.

- Attempt 1: L_{1} is more complicated than L_{2} if $\left|L_{1}\right|>\left|L_{2}\right|$

Motivation

- Let L_{1}, L_{2} be regular languages.
- Aim: Give meaning to the statement

$$
L_{1} \text { is more complicated than } L_{2} \text {. }
$$

- Attempt 1: L_{1} is more complicated than L_{2} if $\left|L_{1}\right|>\left|L_{2}\right|$
- Problem: Infinite languages not comparable

Motivation

- Let L_{1}, L_{2} be regular languages.
- Aim: Give meaning to the statement

$$
L_{1} \text { is more complicated than } L_{2} \text {. }
$$

- Attempt 1: L_{1} is more complicated than L_{2} if $\left|L_{1}\right|>\left|L_{2}\right|$
- Problem: Infinite languages not comparable
- Attempt 2: L_{1} is more complicated than L_{2} if the minimal automaton of L_{1} has more states than the minimal automaton of L_{2}

Motivation

- Let L_{1}, L_{2} be regular languages.
- Aim: Give meaning to the statement
L_{1} is more complicated than L_{2}.
- Attempt 1: L_{1} is more complicated than L_{2} if $\left|L_{1}\right|>\left|L_{2}\right|$
- Problem: Infinite languages not comparable
- Attempt 2: L_{1} is more complicated than L_{2} if the minimal automaton of L_{1} has more states than the minimal automaton of L_{2}
- Problem: $\left\{a^{1000}\right\}$ more complicated than $\left\{a^{n} \mid n \in \mathbb{N}_{0}\right\}$

Overview

(1) Introduction

(2) Star height
(3) BMC algorithm

4 Loop complexity
(5) Connection between star height and loop complexity

6 References

Regular expressions

Let A be an alphabet, then we have:

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.
- If e and e^{\prime} are regular expressions, then

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.
- If e and e^{\prime} are regular expressions, then
- $\left(e+e^{\prime}\right)$,

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.
- If e and e^{\prime} are regular expressions, then
- $\left(e+e^{\prime}\right)$,
- $\left(e \cdot e^{\prime}\right)$,

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.
- If e and e^{\prime} are regular expressions, then
- $\left(e+e^{\prime}\right)$,
- $\left(e \cdot e^{\prime}\right)$,
- e^{*}
are regular expressions.

Regular expressions

Let A be an alphabet, then we have:

- \varnothing, ε and $a \in A$ are regular expressions.
- If e and e^{\prime} are regular expressions, then
- $\left(e+e^{\prime}\right)$,
- $\left(e \cdot e^{\prime}\right)$,
- e^{*}
are regular expressions.
The language described by a regular expression e is denoted by $\mathcal{L}(e)$.

Star height of regular expressions

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

$$
\mathrm{h}(e):=0 .
$$

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

$$
\mathrm{h}(e):=0 .
$$

- If $e=e^{\prime}+e^{\prime \prime}$ or $e=e^{\prime} \cdot e^{\prime \prime}$, then

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

$$
\mathrm{h}(e):=0 .
$$

- If $e=e^{\prime}+e^{\prime \prime}$ or $e=e^{\prime} \cdot e^{\prime \prime}$, then

$$
\mathrm{h}(e):=\max \left(h\left(e^{\prime}\right), h\left(e^{\prime \prime}\right)\right)
$$

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

$$
\mathrm{h}(e):=0 .
$$

- If $e=e^{\prime}+e^{\prime \prime}$ or $e=e^{\prime} \cdot e^{\prime \prime}$, then

$$
\mathrm{h}(e):=\max \left(h\left(e^{\prime}\right), h\left(e^{\prime \prime}\right)\right)
$$

- If $e=e^{\prime *}$, then

Star height of regular expressions

Let e be a regular expression over an alphabet A, then its star height is defined as

- If $e=\varnothing, e=\varepsilon$ or $e=a \in A$, then

$$
\mathrm{h}(e):=0 .
$$

- If $e=e^{\prime}+e^{\prime \prime}$ or $e=e^{\prime} \cdot e^{\prime \prime}$, then

$$
\mathrm{h}(e):=\max \left(h\left(e^{\prime}\right), h\left(e^{\prime \prime}\right)\right)
$$

- If $e=e^{*}$, then

$$
h(e):=1+h\left(e^{\prime}\right) .
$$

Examples

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*}$

$$
\Rightarrow \mathrm{h}\left(e_{1}\right)=
$$

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*} \quad \Rightarrow \mathrm{~h}\left(e_{1}\right)=2$

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*} \quad \Rightarrow \mathrm{~h}\left(e_{1}\right)=2$
- $e_{2}:=a^{*}+\left(\left(b^{*} a b^{*}\right)^{*} a\right)^{*} \Rightarrow \mathrm{~h}\left(e_{2}\right)=$

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*} \quad \Rightarrow \mathrm{~h}\left(e_{1}\right)=2$
- $e_{2}:=a^{*}+\left(\left(b^{*} a b^{*}\right)^{*} a\right)^{*} \Rightarrow \mathrm{~h}\left(e_{2}\right)=3$

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*} \quad \Rightarrow \mathrm{~h}\left(e_{1}\right)=2$
- $e_{2}:=a^{*}+\left(\left(b^{*} a b^{*}\right)^{*} a\right)^{*} \Rightarrow \mathrm{~h}\left(e_{2}\right)=3$
- Caution: $\mathcal{L}\left(a^{*}\right)=\mathcal{L}\left(\left(a^{*}\right)^{*}\right)$, but

Examples

- $e_{1}:=a^{*}\left(b a^{*}\right)^{*} \quad \Rightarrow \mathrm{~h}\left(e_{1}\right)=2$
- $e_{2}:=a^{*}+\left(\left(b^{*} a b^{*}\right)^{*} a\right)^{*} \Rightarrow \mathrm{~h}\left(e_{2}\right)=3$
- Caution: $\mathcal{L}\left(a^{*}\right)=\mathcal{L}\left(\left(a^{*}\right)^{*}\right)$, but $\mathrm{h}\left(a^{*}\right)=1 \neq 2=\mathrm{h}\left(\left(a^{*}\right)^{*}\right)$

Star height of regular languages

Star height of regular languages

Let L be a regular language, then its star height is defined as

Star height of regular languages

Let L be a regular language, then its star height is defined as

$$
\mathrm{h}(L):=\min (\{\mathrm{h}(e) \mid \mathcal{L}(e)=L\})
$$

Overview

(1) Introduction

(2) Star height
(3) BMC algorithm

4 Loop complexity
(5) Connection between star height and loop complexity

6 References

Description

Description

- Brzozowski-McCluskey algorithm

Description

- Brzozowski-McCluskey algorithm
- Operates on generalized automaton \mathcal{A}, i.e. an automaton whose edges are labeled with regular expressions

Description

- Brzozowski-McCluskey algorithm
- Operates on generalized automaton \mathcal{A}, i.e. an automaton whose edges are labeled with regular expressions
- Computes regular expression e with $\mathcal{L}(e)=\mathcal{L}(\mathcal{A})$

BMC algorithm

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states
(2) Insert new state t and ε-transitions from all final states to t

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states
(2) Insert new state t and ε-transitions from all final states to t
(3) Successively remove the states of \mathcal{A}, updating the edges in the following manner:

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states
(2) Insert new state t and ε-transitions from all final states to t
(3) Successively remove the states of \mathcal{A}, updating the edges in the following manner:

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states
(2) Insert new state t and ε-transitions from all final states to t
(3) Successively remove the states of \mathcal{A}, updating the edges in the following manner:

BMC algorithm

(1) Insert new state i and ε-transitions from i to all initial states
(2) Insert new state t and ε-transitions from all final states to t
(3) Successively remove the states of \mathcal{A}, updating the edges in the following manner:

(9) Join all expressions on edges from i to t using ' + '

Example

Example

Example

Example

Example continued

Example continued

Example continued

Example continued

Overview

(1) Introduction

(2) Star height
(3) BMC algorithm
(4) Loop complexity
(5) Connection between star height and loop complexity

6 References

Graph-theoretic concepts

Graph-theoretic concepts

A set of vertices V of a graph is called

Graph-theoretic concepts

A set of vertices V of a graph is called

- strongly connected, if every vertex in V is reachable by every other vertex in V.

Graph-theoretic concepts

A set of vertices V of a graph is called

- strongly connected, if every vertex in V is reachable by every other vertex in V.
- a ball, if V is strongly connected and has at least one edge.

Examples

Figure : A graph

Examples

Figure : A graph

Figure: Its strongly connected components

Examples

Figure: A graph

Figure: Its strongly connected components

Figure: Its ball

Loop complexity

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

$$
\operatorname{lc}(G):=0
$$

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

$$
\operatorname{lc}(G):=0
$$

- If G is not a ball

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

$$
\operatorname{lc}(G):=0
$$

- If G is not a ball

$$
\operatorname{lc}(G):=\max (\{\operatorname{lc}(B) \mid B \text { is a ball of } G\})
$$

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

$$
\operatorname{lc}(G):=0
$$

- If G is not a ball

$$
\operatorname{lc}(G):=\max (\{\operatorname{lc}(B) \mid B \text { is a ball of } G\})
$$

- If G is a ball

Loop complexity

Let G be a graph, then its loop complexity is defined as follows:

- If G contains no ball

$$
\operatorname{lc}(G):=0
$$

- If G is not a ball

$$
\operatorname{lc}(G):=\max (\{\operatorname{lc}(B) \mid B \text { is a ball of } G\})
$$

- If G is a ball

$$
\operatorname{lc}(G):=1+\min (\{\operatorname{lc}(G \backslash\{v\}) \mid v \text { is a vertex of } G\})
$$

Examples

Figure : A graph G

Examples

Figure: A graph G

We have $\operatorname{lc}(G)=1$.

Overview

(1) Introduction

(2) Star height
(3) BMC algorithm

4 Loop complexity
(5) Connection between star height and loop complexity
(6) References

Theorem

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A}.

Theorem

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A}.

In general, given an automaton \mathcal{A} and two total orders on its states ω_{1} and ω_{2}, we have

Theorem

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A}.

In general, given an automaton \mathcal{A} and two total orders on its states ω_{1} and ω_{2}, we have

$$
\mathrm{h}\left(\operatorname{BMC}\left(\mathcal{A}, \omega_{1}\right)\right) \neq \mathrm{h}\left(\operatorname{BMC}\left(\mathcal{A}, \omega_{2}\right)\right)
$$

as the following example shows:

Example

Example

Star height of result of BMC algorithm: 3

Example continued

Example continued

Star height of result of BMC algorithm: 2

Minimal automata

Minimal automata

- Consider now a regular language L.

Minimal automata

- Consider now a regular language L.
- Does the loop complexity of its minimal automaton correspond to $\mathrm{h}(L)$?

Minimal automata

- Consider now a regular language L.
- Does the loop complexity of its minimal automaton correspond to $\mathrm{h}(L)$?
- Not necessarily, as the following example shows.

Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$
${ }^{1}$ LoSa00, On the star height of regular languages

Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$

- $\operatorname{lc}(\mathcal{A})=3$,
${ }^{1}$ LoSa00, On the star height of regular languages

Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$

- $\operatorname{Ic}(\mathcal{A})=3, \operatorname{lc}(\mathcal{B})=2$,
${ }^{1}$ LoSa00, On the star height of regular languages

Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$

- $\operatorname{Ic}(\mathcal{A})=3, \operatorname{Ic}(\mathcal{B})=2, \operatorname{lc}(\mathcal{C})=1$

[^0]
Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$

- $\operatorname{lc}(\mathcal{A})=3, \operatorname{lc}(\mathcal{B})=2, \operatorname{lc}(\mathcal{C})=1$
- But: $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{B}) \cup \mathcal{L}(\mathcal{C})$

[^1]
Example

Figure : Minimal automata $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for their respective languages ${ }^{1}$

- $\operatorname{Ic}(\mathcal{A})=3, \operatorname{lc}(\mathcal{B})=2, \operatorname{lc}(\mathcal{C})=1$
- But: $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{B}) \cup \mathcal{L}(\mathcal{C})$
- Therefore: $\mathrm{h}(\mathcal{L}(\mathcal{A})) \leq 2<3=\operatorname{lc}(\mathcal{A})$
${ }^{1}$ LoSa00, On the star height of regular languages

Computability

Computability

- Is the star height of a regular language computable?

Computability

- Is the star height of a regular language computable?
- Not in general

Computability

- Is the star height of a regular language computable?
- Not in general
- But: For a subset of the regular languages (pure-group languages) it is computable

Overview

(1) Introduction

(2) Star height
(3) BMC algorithm
(4) Loop complexity
(5) Connection between star height and loop complexity
(6) References

References

[LoSa00] Lombardy, S.; Sakarovitch, J.: On the star height of rational languages. In: Proceedings of the 3rd International Conference on Words, Languages and Combinatorics, Kyoto (Japan), March 2000

[^0]: ${ }^{1}$ LoSa00, On the star height of regular languages

[^1]: ${ }^{1}$ LoSa00, On the star height of regular languages

