Star height of regular languages

Thomas Lang

14 July 2014

Albert-Ludwigs-Universität Freiburg

FREIBURG

Overview

Introduction

2 Star height

- 3 BMC algorithm
- 4 Loop complexity

5 Connection between star height and loop complexity

6 References

2 / 29

July 2014

Overview

Introduction

2 Star height

- 3 BMC algorithm
- 4 Loop complexity

5 Connection between star height and loop complexity

6 References

• Let L_1, L_2 be regular languages.

- Let L_1, L_2 be regular languages.
- Aim: Give meaning to the statement

 L_1 is more complicated than L_2 .

- Let L_1, L_2 be regular languages.
- Aim: Give meaning to the statement

 L_1 is more complicated than L_2 .

• Attempt 1: L_1 is more complicated than L_2 if $|L_1| > |L_2|$

- Let L_1, L_2 be regular languages.
- Aim: Give meaning to the statement

 L_1 is more complicated than L_2 .

• Attempt 1: L_1 is more complicated than L_2 if $|L_1| > |L_2|$

Problem: Infinite languages not comparable

- Let L_1, L_2 be regular languages.
- Aim: Give meaning to the statement

 L_1 is more complicated than L_2 .

- Attempt 1: L_1 is more complicated than L_2 if $|L_1| > |L_2|$
 - Problem: Infinite languages not comparable
- Attempt 2: L₁ is more complicated than L₂ if the minimal automaton of L₁ has more states than the minimal automaton of L₂

- Let L_1, L_2 be regular languages.
- Aim: Give meaning to the statement

 L_1 is more complicated than L_2 .

- Attempt 1: L_1 is more complicated than L_2 if $|L_1| > |L_2|$
 - Problem: Infinite languages not comparable
- Attempt 2: L₁ is more complicated than L₂ if the minimal automaton of L₁ has more states than the minimal automaton of L₂
 - ▶ Problem: $\{a^{1000}\}$ more complicated than $\{a^n | n \in \mathbb{N}_0\}$

Overview

Introduction

- 3 BMC algorithm
- 4 Loop complexity

5 Connection between star height and loop complexity

6 References

Let A be an alphabet, then we have:

Let A be an alphabet, then we have:

• \emptyset , ε and $a \in A$ are regular expressions.

Let A be an alphabet, then we have:

- \emptyset , ε and $a \in A$ are regular expressions.
- If e and e' are regular expressions, then

Let A be an alphabet, then we have:

- \emptyset , ε and $a \in A$ are regular expressions.
- If e and e' are regular expressions, then

► (*e* + *e*′),

Let A be an alphabet, then we have:

- \emptyset , ε and $a \in A$ are regular expressions.
- If e and e' are regular expressions, then
 - ► (e + e'),
 - ► (e · e'),

Let A be an alphabet, then we have:

- \emptyset , ε and $a \in A$ are regular expressions.
- If e and e' are regular expressions, then
 - ► (e + e'),
 - ► (e · e'),
 - ► e*

are regular expressions.

Let A be an alphabet, then we have:

- \emptyset , ε and $a \in A$ are regular expressions.
- If e and e' are regular expressions, then
 - ► (e + e'),
 - ► (e · e'),
 - ► e*

are regular expressions.

The language described by a regular expression e is denoted by $\mathcal{L}(e)$.

FREBURG

Let e be a regular expression over an alphabet A, then its star height is defined as

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

h(e) := 0.

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

$$h(e) := 0.$$

• If
$$e = e' + e''$$
 or $e = e' \cdot e''$, then

JNI FREIBURG

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

$$h(e) := 0.$$

• If e = e' + e'' or $e = e' \cdot e''$, then

 $h(e) := \max(h(e'), h(e'')).$

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

$$h(e) := 0.$$

• If
$$e = e' + e''$$
 or $e = e' \cdot e''$, then
 $h(e) := \max(h(e'), h(e'')).$

• If $e = e'^*$, then

Let e be a regular expression over an alphabet A, then its star height is defined as

• If $e = \emptyset$, $e = \varepsilon$ or $e = a \in A$, then

$$h(e) := 0.$$

$$h(e) := 1 + h(e').$$

REIBURG

Examples

Thomas Lang

Star height of regular languages

July 2014 8 / 29

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) =$$

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) = 2$$

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) = 2$$

•
$$e_2 := a^* + ((b^*ab^*)^*a)^* \Rightarrow h(e_2) =$$

Thomas Lang

Star height of regular languages

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) = 2$$

•
$$e_2 := a^* + ((b^*ab^*)^*a)^* \Rightarrow h(e_2) = 3$$

Thomas Lang

Star height of regular languages

July 2014 8 / 29

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) = 2$$

•
$$e_2 := a^* + ((b^*ab^*)^*a)^* \Rightarrow h(e_2) = 3$$

• Caution:
$$\mathcal{L}(a^*) = \mathcal{L}((a^*)^*)$$
, but

•
$$e_1 := a^*(ba^*)^* \qquad \Rightarrow h(e_1) = 2$$

•
$$e_2 := a^* + ((b^*ab^*)^*a)^* \Rightarrow h(e_2) = 3$$

• Caution:
$$\mathcal{L}(a^*) = \mathcal{L}((a^*)^*)$$
, but $h(a^*) = 1 \neq 2 = h((a^*)^*)$

Star height of regular languages

Let L be a regular language, then its star height is defined as

Let L be a regular language, then its star height is defined as

$$h(L) := \min(\{h(e) \mid \mathcal{L}(e) = L\}).$$
Overview

Introduction

2 Star height

- 3 BMC algorithm
 - 4 Loop complexity

5 Connection between star height and loop complexity

6 References

Description

• Brzozowski-McCluskey algorithm

- Brzozowski-McCluskey algorithm
- Operates on generalized automaton \mathcal{A} , i.e. an automaton whose edges are labeled with regular expressions

- Brzozowski-McCluskey algorithm
- Operates on generalized automaton \mathcal{A} , i.e. an automaton whose edges are labeled with regular expressions
- Computes regular expression e with $\mathcal{L}(e) = \mathcal{L}(\mathcal{A})$

Thomas Lang

Star height of regular languages

July 2014 12 / 29

1 Insert new state *i* and ε -transitions from *i* to all initial states

() Insert new state *i* and ε -transitions from *i* to all initial states

2 Insert new state t and ε -transitions from all final states to t

- Insert new state i and
 estimate -transitions from i to all initial states
- 2 Insert new state t and ε -transitions from all final states to t
- Successively remove the states of A, updating the edges in the following manner:

- **(**) Insert new state *i* and ε -transitions from *i* to all initial states
- 2 Insert new state t and ε -transitions from all final states to t
- Successively remove the states of A, updating the edges in the following manner:

BURG

- **()** Insert new state *i* and ε -transitions from *i* to all initial states
- 2 Insert new state t and ε -transitions from all final states to t
- Successively remove the states of A, updating the edges in the following manner:

- **()** Insert new state *i* and ε -transitions from *i* to all initial states
- 2 Insert new state t and ε -transitions from all final states to t
- Successively remove the states of A, updating the edges in the following manner:

Join all expressions on edges from i to t using '+'

Thomas Lang

Star height of regular languages

July 2014 13 / 29

Thomas Lang

Star height of regular languages

July 2014 13 / 29

FREBURG

Star height of regular languages

Thomas Lang

Star height of regular languages

July 2014 14 / 29

Star height of regular languages

FREIBURG

Overview

Introduction

2 Star height

3 BMC algorithm

4 Loop complexity

Connection between star height and loop complexity

6 References

Graph-theoretic concepts

Thomas Lang

Star height of regular languages

July 2014 17 / 29

A set of vertices V of a graph is called

A set of vertices V of a graph is called

• *strongly connected*, if every vertex in V is reachable by every other vertex in V.

A set of vertices V of a graph is called

- *strongly connected*, if every vertex in V is reachable by every other vertex in V.
- a *ball*, if V is strongly connected and has at least one edge.

Figure : A graph

Figure : Its strongly connected components

Figure : Its ball

UNI FREIBURG

Thomas Lang

Star height of regular languages

July 2014 19 / 29

Let G be a graph, then its loop complexity is defined as follows:

Let ${\it G}$ be a graph, then its loop complexity is defined as follows:

• If G contains no ball

Let G be a graph, then its loop complexity is defined as follows:

• If G contains no ball

lc(G) := 0

Let G be a graph, then its loop complexity is defined as follows:

• If G contains no ball

lc(G) := 0

• If G is not a ball

Let G be a graph, then its loop complexity is defined as follows:

• If G contains no ball

lc(G) := 0

• If G is not a ball

 $lc(G) := max({lc(B)|B is a ball of G})$

July 2014 19 / 29

Let G be a graph, then its loop complexity is defined as follows:

• If G contains no ball

lc(G) := 0

• If G is not a ball

 $lc(G) := max({lc(B)|B is a ball of G})$

If G is a ball

19 / 29

July 2014

Let G be a graph, then its loop complexity is defined as follows:

• If G contains no ball

$$lc(G) := 0$$

• If G is not a ball

$$lc(G) := max({lc(B)|B is a ball of G})$$

If G is a ball

 $\mathsf{lc}(G) := 1 + \min(\{\mathsf{lc}(G \setminus \{v\}) | v \text{ is a vertex of } G\})$

19 / 29

July 2014

Figure : A graph G

Thomas Lang

Star height of regular languages

Figure : A graph G

We have lc(G) = 1.

FREBURG

Thomas Lang

Star height of regular languages

Overview

Introduction

2 Star height

- 3 BMC algorithm
- 4 Loop complexity

5 Connection between star height and loop complexity

6 References

21 / 29

July 2014

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A} .

22 / 29

July 2014

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A} .

In general, given an automaton \mathcal{A} and two total orders on its states ω_1 and ω_2 , we have

The loop complexity of a trim automaton \mathcal{A} is equal to the minimum of the star heights of the expressions obtained by the different possible runs of the BMC algorithm on \mathcal{A} .

In general, given an automaton \mathcal{A} and two total orders on its states ω_1 and ω_2 , we have

```
h(BMC(\mathcal{A}, \omega_1)) \neq h(BMC(\mathcal{A}, \omega_2))
```

as the following example shows:

Thomas Lang

Star height of regular languages

Star height of result of BMC algorithm: 3

Example continued

Thomas Lang

Star height of regular languages

July 2014 24 / 29

Example continued

Star height of result of BMC algorithm: 2

Minimal automata

• Consider now a regular language L.

- Consider now a regular language L.
- Does the loop complexity of its minimal automaton correspond to h(L)?

- Consider now a regular language L.
- Does the loop complexity of its minimal automaton correspond to h(L)?
- Not necessarily, as the following example shows.

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

 $^{1}\mbox{LoSa00},$ On the star height of regular languages

Thomas Lang

Star height of regular languages

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

•
$$\mathsf{lc}(\mathcal{A}) = 3$$
,

 $^{1}\mbox{LoSa00},$ On the star height of regular languages

Thomas Lang

Star height of regular languages

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

•
$$lc(\mathcal{A}) = 3$$
, $lc(\mathcal{B}) = 2$,

 $^{1}\mbox{LoSa00},$ On the star height of regular languages

Thomas Lang

Star height of regular languages

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

•
$$lc(\mathcal{A}) = 3$$
, $lc(\mathcal{B}) = 2$, $lc(\mathcal{C}) = 1$

 $^{1}\mbox{LoSa00},$ On the star height of regular languages

Thomas Lang

Star height of regular languages

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

•
$$lc(\mathcal{A}) = 3$$
, $lc(\mathcal{B}) = 2$, $lc(\mathcal{C}) = 1$
• But: $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}) \cup \mathcal{L}(\mathcal{C})$

 $^{1}\mbox{LoSa00},$ On the star height of regular languages

Star height of regular languages

Figure : Minimal automata \mathcal{A} , \mathcal{B} , \mathcal{C} for their respective languages¹

- $lc(\mathcal{A}) = 3$, $lc(\mathcal{B}) = 2$, $lc(\mathcal{C}) = 1$
- But: $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}) \cup \mathcal{L}(\mathcal{C})$

• Therefore:
$$h(\mathcal{L}(\mathcal{A})) \leq 2 < 3 = lc(\mathcal{A})$$

¹LoSa00, On the star height of regular languages

Thomas Lang

Computability

Thomas Lang

Star height of regular languages

July 2014 27 / 29

• Is the star height of a regular language computable?

- Is the star height of a regular language computable?
- Not in general

- Is the star height of a regular language computable?
- Not in general
- But: For a subset of the regular languages (*pure-group languages*) it is computable

Overview

Introduction

2 Star height

- 3 BMC algorithm
- 4 Loop complexity

5 Connection between star height and loop complexity

6 References

28 / 29

July 2014

[LoSa00] Lombardy, S.; Sakarovitch, J.: On the star height of rational languages. In: Proceedings of the 3rd International Conference on Words, Languages and Combinatorics, Kyoto (Japan), March 2000