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• Requirement:

If x, +, and y are displayed then after pressing = ,

the sum of x and y is displayed if x+ y has at most 8 digits,
otherwise “-E-” is displayed.
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If x, +, and y are displayed then after pressing = ,

the sum of x and y is displayed if x+ y has at most 8 digits,
otherwise “-E-” is displayed.
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• Requirement:

If x, +, and y are displayed then after pressing = ,

the sum of x and y is displayed if x+ y has at most 8 digits,
otherwise “-E-” is displayed.
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• Requirement:

If x, +, and y are displayed then after pressing = ,

the sum of x and y is displayed if x+ y has at most 8 digits,
otherwise “-E-” is displayed.
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1 2 3 =

Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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4 5 6 +

1 2 3 =

Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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4 5 6 +

1 2 3 =

Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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-E-

7 8 9 0

4 5 6 +

1 2 3 =

Test some representatives of “equivalence classes”:

• n+ 1, n small, e.g. 27 + 1

• n+m, n small, m small (for non error), e.g. 13 + 27

• n+m, n big, m big (for non error), e.g. 12345 + 678

• n+m, n huge, m small (for error), e.g. 99999999 + 1

• ...
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• Oops...
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2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5 e l s e

6 re turn x+y ;
7 }
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• Tester: “Hey, you’ve got to care for the 8-digit constraint in line 6!”
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2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5 e l s e

6 re turn x+y ;
7 }

1 i n t add ( i n t x , i n t y )
2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5

6 i n t r = x + y ;
7

8 i f ( r > 99999999)
9 r = −1;

10

11 re turn r ;
12 }

• Tester: “Hey, you’ve got to care for the 8-digit constraint in line 6!”

• Programmer: “Eh, piece of cake. ∗tippeditipp∗ Here you are!”
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1 i n t add ( i n t x , i n t y )
2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5 e l s e

6 re turn x+y ;
7 }

1 i n t add ( i n t x , i n t y )
2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5

6 i n t r = x + y ;
7

8 i f ( r > 99999999)
9 r = −1;

10

11 re turn r ;
12 }

• Tester: “Hey, you’ve got to care for the 8-digit constraint in line 6!”

• Programmer: “Eh, piece of cake. ∗tippeditipp∗ Here you are!”

• Tester: “Fine, all tests passed!”
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1 i n t add ( i n t x , i n t y )
2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5

6 i n t r = x + y ;
7

8 i f ( r > 99999999)
9 r = −1;

10

11 re turn r ;
12 }

With our test cases

• 27 + 1,

• 13 + 27,

• 12345 + 678,

• 99999999 + 1

we have
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• 27 + 1,

• 13 + 27,

• 12345 + 678,

• 99999999 + 1

we have

• 100% statement coverage,
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4 re turn ++x ;
5

6 i n t r = x + y ;
7
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9 r = −1;
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12 }

With our test cases

• 27 + 1,

• 13 + 27,

• 12345 + 678,

• 99999999 + 1

we have

• 100% statement coverage,

• 100% branch coverage,

• 100% condition coverage,
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1 i n t add ( i n t x , i n t y )
2 {
3 i f ( y == 1) // be f a s t
4 re turn ++x ;
5

6 i n t r = x + y ;
7

8 i f ( r > 99999999)
9 r = −1;

10

11 re turn r ;
12 }

With our test cases

• 27 + 1,

• 13 + 27,

• 12345 + 678,

• 99999999 + 1

we have

• 100% statement coverage,

• 100% branch coverage,

• 100% condition coverage,

• ...

and still didn’t spot the bug.

To be sure, we’d need to test all (how many?) combinations – impractical!



What If We Need to Be Sure?
–
2
0
1
4
-0
4
–
m
a
in

–

9/20

1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5

6

7

8

9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e {
15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19 }
20

21

22 re turn r ;
23 }
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14 e l s e {
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17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19 }
20

21

22 re turn r ;
23 }

(i) A precise (formal) specification:

• x and y are non-negative
8-digit numbers:
0 ≤ x < 108

0 ≤ y < 108

• all non-negative returned
numbers are 8-digit:
r < 108
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specification understood by a
verification tool.
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1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5 a s s e r t ( x >= 0 ) ;
6 a s s e r t ( x <= DIGIT 8 MAX ) ;
7 a s s e r t ( y >= 0 ) ;
8 a s s e r t ( y <= DIGIT 8 MAX ) ;
9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e {
15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19 }
20

21 a s s e r t ( r <= DIGIT 8 MAX ) ;
22 re turn r ;
23 }

(i) A precise (formal) specification:

• x and y are non-negative
8-digit numbers:
0 ≤ x < 108

0 ≤ y < 108

• all non-negative returned
numbers are 8-digit:
r < 108

(ii) A representation of the
specification understood by a
verification tool.
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1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5 a s s e r t ( x >= 0 ) ;
6 a s s e r t ( x <= DIGIT 8 MAX ) ;
7 a s s e r t ( y >= 0 ) ;
8 a s s e r t ( y <= DIGIT 8 MAX ) ;
9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e {
15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19 }
20

21 a s s e r t ( r <= DIGIT 8 MAX ) ;
22 re turn r ;
23 }

(i) A precise (formal) specification:

• x and y are non-negative
8-digit numbers:
0 ≤ x < 108

0 ≤ y < 108

• all non-negative returned
numbers are 8-digit:
r < 108

(ii) A representation of the
specification understood by a
verification tool.

(iii) A verification tool:

% check add.c

line 19: assertion violated

%
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1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5 a s s e r t ( x >= 0 ) ;
6 a s s e r t ( x <= DIGIT 8 MAX ) ;
7 a s s e r t ( y >= 0 ) ;
8 a s s e r t ( y <= DIGIT 8 MAX ) ;
9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e

15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19

20 a s s e r t ( r <= DIGIT 8 MAX ) ;
21 re turn r ;
22 }

• Fix and check the fixed version:

% check add.c

verification succeeded

%
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1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5 a s s e r t ( x >= 0 ) ;
6 a s s e r t ( x <= DIGIT 8 MAX ) ;
7 a s s e r t ( y >= 0 ) ;
8 a s s e r t ( y <= DIGIT 8 MAX ) ;
9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e

15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19

20 a s s e r t ( r <= DIGIT 8 MAX ) ;
21 re turn r ;
22 }

• Fix and check the fixed version:

% check add.c

verification succeeded

%

• How is this possible?

• Subject of the seminar!
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1 #de f i n e DIGIT 8 MAX 99999999
2

3 i n t add ( i n t x , i n t y )
4 {
5 a s s e r t ( x >= 0 ) ;
6 a s s e r t ( x <= DIGIT 8 MAX ) ;
7 a s s e r t ( y >= 0 ) ;
8 a s s e r t ( y <= DIGIT 8 MAX ) ;
9

10 i n t r ;
11

12 i f ( y == 1) // be f a s t
13 r = ++x ;
14 e l s e

15 r = x + y ;
16

17 i f ( r > DIGIT 8 MAX)
18 r = −1;
19

20 a s s e r t ( r <= DIGIT 8 MAX ) ;
21 re turn r ;
22 }

• Fix and check the fixed version:

% check add.c

verification succeeded

%

• How is this possible?

• Subject of the seminar!

• Alternative outcome:

% check add.c

out of memory

%

• None the wiser...
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A working definition for “formal methods for C”:

(i) A precise, formal, mathematical requirements specification.

(ii) An algorithm which is able to prove or disprove for a given piece of C
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.
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Are we really sure then? – “There is no silver bullet” (surprise):
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• The tool output may be interpreted in a wrong way.
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A working definition for “formal methods for C”:

(i) A precise, formal, mathematical requirements specification.

(ii) An algorithm which is able to prove or disprove for a given piece of C
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? – “There is no silver bullet” (surprise):

• The requirements specification may upfront be wrong.

• The tool output may be interpreted in a wrong way.

• The tool may have bugs or run on buggy hardware.
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A working definition for “formal methods for C”:

(i) A precise, formal, mathematical requirements specification.

(ii) An algorithm which is able to prove or disprove for a given piece of C
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? – “There is no silver bullet” (surprise):

• The requirements specification may upfront be wrong.

• The tool output may be interpreted in a wrong way.

• The tool may have bugs or run on buggy hardware.

• ...

• For production, the program may be compiled with a buggy compiler.

• ...
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• Increased confidence.

• Sometimes reduced overall costs: “find errors early”,
despite additional costs for formalisation.
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• Increased confidence.

• Sometimes reduced overall costs: “find errors early”,
despite additional costs for formalisation.

Possible motivations:

• Loss of lives: aerospace, railway, automotive, fire alarm, ...

• Loss of health: medical devices, ...

• Loss of privacy: encryption protocols, ...

• Loss of money: satellites, factory automation, ...

• ...

Errors sometimes already avoided by formalising requirements – e.g.
“Heartbleed” could possibly have been avoided if RFC 6520 stated

A heartbeat protocol message is valid if and only if

... ∧ M.payload length = length(M.payload) ∧ ...

Not valid messages MUST be discarded.
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• Attend the 2-3 introductory lectures on C and formal methods basics.

• Choose a verification tool from the list (or propose your own).

• Thread 1: Literature research, what’s the theory behind the tool?

• Thread 2: Get your hands dirty.

• get acquainted with the tool on the VM (“Hi tool, nice to meet you!”)

• reproduce and understand the tool provider’s favourite example(s)

• show one more property in that example,
find one more bug in that (possibly reasonably modified) example

• see how the tool does on these three examples:

• scan ushort()

• low battery monitor – programming task

• a big example
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• Attend the 2-3 introductory lectures on C and formal methods basics.

• Choose a verification tool from the list (or propose your own).

• Thread 1: Literature research, what’s the theory behind the tool?

• Thread 2: Get your hands dirty.

• Present: Block-Seminar, 30 min. (?) presentation with

• tool name, brief history, etc.

• what are the tool’s capabilities?

• what’s the theory behind the tool?

• how did the tool perform on the examples?

• conclusion

and participation in discussion after talk.
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Grade: r · b · (0.3 · S + 0.7 · T )

• r ∈ {0, 1}: repeatability package∗ (RP) for favourite example

• b ∈ {0, 1}: low battery monitor, not obviously broken

• S ∈ {1.0, . . . , 4.0, 6.0}: talk structure

• T ∈ {1.0, . . . , 4.0, 6.0}: presentation (incl. RP for three examples)

Deadlines:

• 30.6.2014: “theory behind the tool” part of the talk

• 14.7.2014: talk structure

• tba: presentation

∗: shell script, Makefile, etc. which produces the results reported on in the talk by running

the chosen verification tool on the examples with necessary parameters etc.
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• Formal Methods for C Kickoff

• Introduction, ca. 10 Slides

• Formal Methods, ca. 3 Slides

• Formalia, ca. 3 Slides
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• Formal Methods for C Kickoff

• Introduction, ca. 10 Slides

• Formal Methods, ca. 3 Slides

• Formalia, ca. 3 Slides

No.



Talk Structure Example
–
2
0
1
4
-0
4
–
m
a
in

–

18/20

• Formal Methods for C Kickoff
Goal: give sufficient information for semester planning regarding workload, i.e. sketch

goals and content, fix requirements, discuss grading, agree on common language

• Introduction (ca. 10 Slides)
Goal: point out difference between testing and verification

• little story on pocket calculator: show a bug which happens to be missed by tests

• give example for a proper formal requirement on pocket calculator, say how verification would be used given the C code

• Formal Methods (ca. 3 Slides)
Goal: agree on common understanding of “formal methods”, give outlook on

motivation for their use and their limitations

• working definition: formal requirements, prove/disprove algorithm, tool

• limitations: e.g. bugs in checking tool

• benefits: increased confidence, maybe lower overall cost

• motivation: safety critical domain (transport, health, ...)

• Formalia (ca. 3 Slides)
Goal: agree on expected work, propose schedule and deadlines

• firstly the C seminar, then choose a tool

• then literature research and hands-on experience (two threads)

• hands-on experience: tool’s favourite example and three given ones

• finally, block seminar; sketch expected content of talk

• clarify “structure” using bad/good example
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• check the VM and the homepage for the offered tools/topics

• decide until next week: favourite (and second best) topic

• now: decide for meeting time(s) for introductory lecture

• next meeting: assign topics (and supervisor)
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