— 2014-04 — main —

Formal Methods for C

Seminar — Summer Semester 2014

Daniel Dietsch, Sergio Feo Arenis, Marius Greitschus, Bernd Westphal

— 2014-04 — main

Formal Methods

2/20

— 2014-04 — main —

Once Upon a Time...

3/20

Provably Correct vs. Testing: Pocket Calculator

12345678

— 2014-04 — main —

4/20

Provably Correct vs. Testing: Pocket Calculator

— 2014-04 — main —

12345678

e Requirement:
If x, +, and vy are displayed then after pressing =,

the sum of x and vy is displayed if x + y has at most 8 digits,
otherwise “-E-" is displayed.

4/20

Provably Correct vs. Testing: Pocket Calculator

— 2014-04 — main —

12345705

e Requirement:
If x, +, and vy are displayed then after pressing =,

the sum of x and vy is displayed if x + y has at most 8 digits,
otherwise “-E-" is displayed.

4/20

Provably Correct vs. Testing: Pocket Calculator

— 2014-04 — main —

99999999

e Requirement:
If x, +, and vy are displayed then after pressing =,

the sum of x and vy is displayed if x + y has at most 8 digits,
otherwise “-E-" is displayed.

4/20

Provably Correct vs. Testing: Pocket Calculator

— 2014-04 — main —

e Requirement:
If x, +, and vy are displayed then after pressing =,

the sum of x and vy is displayed if x + y has at most 8 digits,
otherwise “-E-" is displayed.

4/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

99999999

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator

— 2014-04 — main —

Test some representatives of “equivalence classes”:

n+ 1, n small,
n + m, n small, m small (for non error),
n + m, n big, m big (for non error),

n + m, n huge, m small (for error),

eg. 27+1

e.g. 13+ 27

e.g. 12345 + 678
e.g. 99999999 + 1

5/20

lesting the Pocket Calculator: One More Try

1
+ 99999999

— 2014-04 — main —

6,20

lesting the Pocket Calculator: One More Try

00000000

e Oops...

— 2014-04 — main —

6,20

Behind the Scenes: Test 99999999 + 1 Failed...

— 2014-04 — main

1 4nt add(int x, int y)
2 {

3 if (y = 1) // be fast
4 return —++x;

5 else

6 return X+y;

7}

7/20

Behind the Scenes: Test 99999999 + 1 Failed...

— 2014-04 — main —

1 4nt add(int x, int y)
2 {

3 if (y = 1) // be fast
4 return —++x;

5 else

6 return X4y,

[

o Tester: “Hey, you've got to care for the 8-digit constraint in line 6!”

7/20

Behind the Scenes: Test 99999999 + 1 Failed...

— 2014-04 — main —

int add(int x, int y)

1
if (y = 1) // be fast

return —++x;
else
return X4y,

o Tester: “Hey, you've got to care for the 8-digit constraint in line 6!”

e Programmer: “Eh, piece of cake. xtippeditipp* Here you are!”

7/20

Behind the Scenes: Test 99999999 + 1 Failed...

int add(int x, int y)

{
int add(int x, int y) if (y = 1) // be fast
{ return —++x;
if (y = 1) // be fast int r x4y
return —++x;
clae i f (r > 99999999)
return x+ty,
r = —1;
}
return r;
}

o Tester: “Hey, you've got to care for the 8-digit constraint in line 6!”

e Programmer: “Eh, piece of cake. xtippeditipp* Here you are!”

— 2014-04 — main —

7/20

Behind the Scenes: Test 99999999 + 1 Failed...

— 2014-04 — main —

int add(int x, int y)

{
int add(int x, int y) if (y = 1) // be fast
{ return —++x;
if (y = 1) // be fast int r x4y
return —++x;
cloe if (r > 99999999)
return x+ty,
r = —1;
}
return r;
}

o Tester: “Hey, you've got to care for the 8-digit constraint in line 6!”
e Programmer: “Eh, piece of cake. xtippeditipp* Here you are!”

e Tester: “Fine, all tests passed!”

7/20

The Tests Revisited

— 2014-04 — main —

With our test cases

o 27+ 1,

o 13+ 27,

o 12345 + 678,
e 99999999 4- 1

we have

int add(int x, int y)

{
if (y = 1) // be fast

return —++x;
int r = X + y;

if (r > 99999999)
r = —1;

return r;

}

8/20

The Tests Revisited

— 2014-04 — main —

With our test cases

o 27+ 1,

o 13+ 27,

o 12345 + 678,
e 99999999 4- 1

we have

e 100% statement coverage,

int add(int x, int y)

{
if (y = 1) // be fast

return —++x;
int r = X 4+ y;

if (r > 99999999)
r = —1;

return r;

}

8/20

The Tests Revisited

— 2014-04 — main —

With our test cases

o 27+ 1,

o 13+ 27,

o 12345 + 678,
e 99999999 4- 1

we have

e 100% statement coverage,

e 100% branch coverage,

int add(int x, int y)

{
if (y = 1) // be fast

return —++x;
int r = X 4+ y;

if (r > 99999999)
r = —1;

return r;

}

8/20

The Tests Revisited

— 2014-04 — main —

With our test cases

o 27+ 1,

o 13+ 27,

o 12345 + 678,
e 99999999 4- 1

we have

e 100% statement coverage,

e 100% branch coverage,

e 100% condition coverage,

int add(int x, int y)

{
if (y = 1) // be fast

return —++x;
int r = X 4+ y;

if (r > 99999999)
r = —1;

return r;

t

8/20

The Tests Revisited

— 2014-04 — main —

With our test cases

o 27+ 1,

o 13+ 27,

o 12345 + 678,
e 99999999 4- 1

we have

e 100% statement coverage,
e 100% branch coverage,
e 100% condition coverage,

and still didn’t spot the bug.

int add(int x, int y)

{
if (y = 1) // be fast

return —++x;
int r = X 4+ y;

if (r > 99999999)
r = —1;

return r;

t

To be sure, we'd need to test all (how many?) combinations — impractical!

8/20

What If We Need to Be Sure?

— 2014-04 — main —

O© 00 N O 1 b W DN -

N N NN B R e e e e
W N B O © 00 N O 01 d W N R O

#define DIGIT_-8_MAX 99999999

int add(int x, int y)

{

int r;

if (y = 1) // be fast

r = ++x,;
else {
r=x 4y,

if (r > DIGIT_8_.MAX)
r = —1;

return r;

9/20

What If We Need to Be Sure?

— 2014-04 — main —

(i) A precise (formal) specification:

e x and y are non-negative
8-digit numbers:
0<z<10°
0<y< 108

¢ all non-negative returned

numbers are 8-digit:
r < 103

#define DIGIT_-8_MAX 99999999

int add(int x, int y)

{

int r;

if (y = 1) // be fast

r= —44x;
else {
r=x 4y,

if (r > DIGIT_8_.MAX)
r = —1;

return r;

9/20

What If We Need to Be Sure?

— 2014-04 — main —

(i) A precise (formal) specification:

e x and y are non-negative
8-digit numbers:
0 <z <10
0<y< 103

¢ all non-negative returned

numbers are 8-digit:
r < 103

(ii) A representation of the
specification understood by a
verification tool.

#define DIGIT_-8_MAX 99999999

int add(int x, int y)

{

int r;

if (y = 1) // be fast

r= —44x;
else {
r=x +y,;

if (r > DIGIT_8_.MAX)
r = —1;

return r;

9/20

What If We Need to Be Sure?

— 2014-04 — main —

#define DIGIT_8_MAX 99999999

(i) A precise (formal) specification: int add(int x, int y)

{
e x and y are non-negative assert(x >= 0);
8-digit numbers: assert (x <= DIGIT_8_MAX);
3 assert(y >= 0);
0<z <10 assert (y <= DIGIT_8_ MAX):
0<y< 103
o all non-negative returned it
numbers are 8-digit: if (y — 1) // be fast
T << 108 r = +4x:
) _ else {
(ii) A representation of the r=x+y;
specification understood by a |
verification tool. if (r> 1D|GIT‘8‘MAX)
r = —1;
}
assert(r <= DIGIT_8_MAX);
return r;
}

9/20

What If We Need to Be Sure?

— 2014-04 — main —

(i) A precise (formal) specification:

x and y are non-negative
8-digit numbers:

0 <z <10

0<y< 103

all non-negative returned
numbers are 8-digit:
r < 103

(ii) A representation of the

N

N

specification understood by a
verification tool.

A verification tool:

% check add.c
line 19: assertion violated

T

#define DIGIT_8_MAX 99999999

int add(int x, int y)

{

assert(x >= 0);

assert(y >= 0);

assert
int r;

if (y = 1) // be fast
r = +4x;

else {
r=x +y,;

if (r > DIGIT_8_.MAX)
r = —1;

}

assert(r <= DIGIT_8_MAX);

return r;

(

assert (x <= DIGIT_8_MAX);
(
(

y <= DIGIT_8_MAX):

9/20

What If We Need to Be Sure?

— 2014-04 — main —

e Fix and check the fixed version:

% check add.c
verification succeeded

/.

#define DIGIT_-8_MAX 99999999

int add(int x, int y)

{

assert(x >= 0);

assert (x <= DIGIT_8_-MAX);
assert(y >= 0);

assert(y <= DIGIT_8_-MAX);
int r;

if (y = 1) // be fast
r = ++X;

else
r=x +y,;

if (r > DIGIT_8_.MAX)
r = —1;

assert(r <= DIGIT_8_MAX);

return r;

10/20

What If We Need to Be Sure?

— 2014-04 — main —

e Fix and check the fixed version:

% check add.c
verification succeeded

/.

e How is this possible?

e Subject of the seminar!

#define DIGIT_-8_MAX 99999999

int add(int x, int y)

{

assert(x >= 0);
assert (x <= DIGIT_8_-MAX);
assert(y >= 0);

assert(y <= DIGIT_8_-MAX);

int r;

if (y = 1) // be fast
r = 4++X;

else
r=x +y,;

if (r > DIGIT_8_.MAX)
r = —1;

assert(r <= DIGIT_8_MAX);

return r;

10/20

What If We Need to Be Sure?

— 2014-04 — main —

#define DIGIT_8_MAX 99999999
o Fix and check the fixed version: | | |
int add(int x, int y)
%» check add.c {
verification succeeded assert(x >= 0);
o assert (x <= DIGIT_8_MAX);
assert(y >= 0);
assert(y <= DIGIT_8_.MAX);

int r;
e How is this possible?
if (y = 1) // be fast

. . |
e Subject of the seminar! = i
else
r=x +y,;
:] > DIGIT_8_MAX

e Alternative outcome: Zfr(; Y)

%» check add.c

out of memory assert(r <= DIGIT_8_MAX);

o return r;

}

e None the wiser...

10/20

Bottom Line: Formal Methods for C

— 2014-04 — main —

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

11/20

Bottom Line: Formal Methods for C

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? — “There is no silver bullet” (surprise):

— 2014-04 — main —

11/20

Bottom Line: Formal Methods for C

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? — “There is no silver bullet” (surprise):

e The requirements specification may upfront be wrong.

— 2014-04 — main —

11/20

Bottom Line: Formal Methods for C

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? — “There is no silver bullet” (surprise):

e The requirements specification may upfront be wrong.

e The tool output may be interpreted in a wrong way.

— 2014-04 — main —

11/20

Bottom Line: Formal Methods for C

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? — “There is no silver bullet” (surprise):

e The requirements specification may upfront be wrong.
e The tool output may be interpreted in a wrong way.

e The tool may have bugs or run on buggy hardware.

— 2014-04 — main —

11/20

Bottom Line: Formal Methods for C

— 2014-04 — main —

A working definition for “formal methods for C":

(i) A precise, formal, mathematical requirements specification.

i) An algorithm which is able to prove or disprove for a given piece of C
g
code whether it satisfies the specification.

(iii) At best: an implementation of that algorithm.

Are we really sure then? — “There is no silver bullet” (surprise):

e The requirements specification may upfront be wrong.
e The tool output may be interpreted in a wrong way.

e The tool may have bugs or run on buggy hardware.

e For production, the program may be compiled with a buggy compiler.

11/20

(Anticipated) Benefits

e Increased confidence.

e Sometimes reduced overall costs: “find errors early”,
despite additional costs for formalisation.

— 2014-04 — main —

12/20

(Anticipated) Benefits

e Increased confidence.

e Sometimes reduced overall costs: “find errors early”,
despite additional costs for formalisation.

Possible motivations:

o Loss of lives: aerospace, railway, automotive, fire alarm, ...
e Loss of health: medical devices, ...
e Loss of privacy: encryption protocols, ...

e Loss of money: satellites, factory automation, ...

— 2014-04 — main —

12/20

(Anticipated) Benefits

e Increased confidence.

e Sometimes reduced overall costs: “find errors early”,
despite for formalisation.

Possible motivations:

e Loss of lives: aerospace, railway, automotive, fire alarm, ...
e Loss of health: medical devices, ...

e Loss of privacy: encryption protocols, ...

e Loss of money: satellites, factory automation, ...

Errors sometimes already avoided by formalising requirements — e.g.
“Heartbleed” could possibly have been avoided if RFC 6520 stated

A heartbeat protocol message is valid if and only if
... N\M.payload length = length(M.payload) A ...

Not valid messages MUST be discarded.

— 2014-04 — main —

12/20

— 2014-04 — main

The Seminar

13/20

Seminar...?

14/20

— ulew — $0-y10T -

The Task

e Attend the 2-3 introductory lectures on C and formal methods basics.

— 2014-04 — main —

15/20

The Task

e Attend the 2-3 introductory lectures on C and formal methods basics.

e Choose a verification tool from the list (or propose your own).

— 2014-04 — main —

15/20

The Task

e Attend the 2-3 introductory lectures on C and formal methods basics.

e Choose a verification tool from the list (or propose your own).

e Thread 1: Literature research, what's the theory behind the tool?

— 2014-04 — main —

15/20

The Task

— 2014-04 — main —

o Attend the 2-3 introductory lectures on C and formal methods basics.

e Choose a verification tool from the list (or propose your own).

e Thread 1: Literature research, what's the theory behind the tool?

e Thread 2: Get your hands dirty.

get acquainted with the tool on the VM (“Hi tool, nice to meet you!")
reproduce and understand the tool provider’s favourite example(s)

show one more property in that example,
find one more bug in that (possibly reasonably modified) example

see how the tool does on these three examples:

e scan_ushort()
e low battery monitor — programming task

e a big example

15/20

The Task

e Attend the 2-3 introductory lectures on C and formal methods basics.
e Choose a verification tool from the list (or propose your own).

e Thread 1: Literature research, what's the theory behind the tool?

e Thread 2: Get your hands dirty.

— 2014-04 — main —

15/20

The Task

— 2014-04 — main —

o Attend the 2-3 introductory lectures on C and formal methods basics.
e Choose a verification tool from the list (or propose your own).

e Thread 1: Literature research, what's the theory behind the tool?

e Thread 2: Get your hands dirty.

o Present: Block-Seminar, 30 min. (7) presentation with

e tool name, brief history, etc.

e what are the tool's capabilities?

e what's the theory behind the tool?

e how did the tool perform on the examples?

e conclusion

and participation in discussion after talk.

15/20

Formalia

— 2014-04 — main —

Grade: r-b-(0.3-540.7-T)
o r € {0,1}: repeatability package® (RP) for favourite example
o b€ {0,1}: low battery monitor, not obviously broken

o §€{1.0,...,4.0,6.0}: talk structure
e T'e{1.0,...,4.0,6.0}: presentation (incl. RP for three examples)

Deadlines:

e 30.6.2014: “theory behind the tool” part of the talk
o 14.7.2014: talk structure

e tha: presentation

x: shell script, Makefile, etc. which produces the results reported on in the talk by running
the chosen verification tool on the examples with necessary parameters etc.

16/20

Talk Structure

— 2014-04 — main —

e Formal Methods for C Kickoff

e Introduction, ca. 10 Slides
e Formal Methods, ca. 3 Slides

e Formalia, ca. 3 Slides

17/20

Talk Structure

— 2014-04 — main —

e Formal Methods for C Kickoff

e Introduction, ca. 10 Slides
e Formal Methods, ca. 3 Slides

e Formalia, ca. 3 Slides

17/20

Talk Structure Example

— 2014-04 — main —

e Formal Methods for C Kickoff
Goal: give sufficient information for semester planning regarding workload, i.e. sketch
goals and content, fix requirements, discuss grading, agree on common language

e Introduction (ca. 10 Slides)
Goal: point out difference between testing and verification

® little story on pocket calculator: show a bug which happens to be missed by tests

® give example for a proper formal requirement on pocket calculator, say how verification would be used given the C code

o Formal Methods (ca. 3 Slides)
Goal: agree on common understanding of “formal methods”, give outlook on
motivation for their use and their limitations

® working definition: formal requirements, prove/disprove algorithm, tool
® limitations: e.g. bugs in checking tool

® benefits: increased confidence, maybe lower overall cost

o

motivation: safety critical domain (transport, health, ...)

o Formalia (ca. 3 Slides)
Goal: agree on expected work, propose schedule and deadlines

® firstly the C seminar, then choose a tool
® then literature research and hands-on experience (two threads)

® hands-on experience: tool's favourite example and three given ones
® finally, block seminar; sketch expected content of talk

o

clarify “structure” using bad/good example

18/20

Plan Proposal

e check the VM and the homepage for the offered tools/topics

o decide until next week: favourite (and second best) topic

e now: decide for meeting time(s) for introductory lecture

e next meeting: assign topics (and supervisor)

— 2014-04 — main —

19/20

References

— 2014-04 — main —

[1ISO, 1999] ISO (1999). Programming languages — C. Technical Report
ISO/IEC 9899:1999, I1SO. Second edition, 1999-12-01.

20/20

	Formal Methods
	Once Upon a Time...
	Provably Correct vs. Testing: Pocket Calculator
	Testing the Pocket Calculator
	Testing the Pocket Calculator: One More Try
	Behind the Scenes: Test 99999999 + 1 Failed...
	The Tests Revisited
	What If We Need to Be Sure?
	What If We Need to Be Sure?
	Bottom Line: Formal Methods for C
	(Anticipated) Benefits

	The Seminar
	Seminar...?
	The Task
	Formalia
	Talk Structure
	Talk Structure Example
	Plan Proposal
	References

