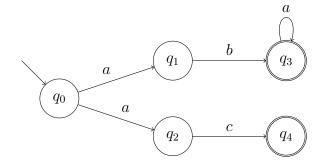


Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling

3. Exercise Sheet for the Tutorial Computer Science Theory

Exercise 1: Reverse Operator


The reverse operator for strings $w = a_1 a_2 \dots a_n \in \Sigma^*$ is defined as:

$$w^R = a_n a_{n-1} \dots a_1$$

Based upon this definition the *reverse operator* for languages $L \subseteq \Sigma^*$ is defined as:

$$L^R = \{ w^R \in \Sigma^* \mid w \in L \}$$

Let \mathcal{B} be the following NFA over the alphabet $\Sigma = \{a, b, c\}$.

- (a) Describe the language $\mathcal{L}(\mathcal{B})$ recognized by \mathcal{B} and the corresponding *reverse language* $\mathcal{L}(\mathcal{B})^R$.
- (b) Construct an ε -NEA that recognizes the reverse language $\mathcal{L}(\mathcal{B})^R$.

Exercise 2: Regular Expressions

Construct regular expressions for the following languages over the alphabet $\Sigma = \{a, b\}$.

ļ

- (a) $L_1 = \{ w \in \Sigma^* \mid \text{ every } a \text{ in } w \text{ is immediately followed by a } b \}$
- (b) $L_2 = \{ w \in \Sigma^* \mid w \text{ contains } bb \}$
- (c) $L_3 = \{ w \in \Sigma^* \mid w \text{ does not contain } bb \}$

(d)
$$L_4 = \begin{cases} w \in \Sigma^* & w \text{ contains the symbol } a \text{ exactly twice or } \\ w \text{ contains the symbol } b \text{ exactly once} \end{cases}$$

(e) Language of all strings ending with an even number of b's:

$$L_5 = \left\{ w \in \Sigma^* \mid \text{ the length of } w \text{'s longest suffix that contains} \\ \text{only } b \text{'s is even-numbered} \right\}$$

Exercise 3: Pumping Lemma

Consider the language $L = \{a^k b a^k \mid k \in \mathbb{N}\}$. Use the pumping lemma to show that L is not regular.