

Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling

4. Exercise Sheet for the Tutorial Computer Science Theory

Announcement: Starting with this exercise sheet, we change the course interval from one-week to two-week. Accordingly, exercise sheets are designed for two weeks of work.

Exercise 1: Limits of the Pumping Lemma

Consider the following language over the alphabet $\Sigma = \{a, b, c\}$:

$$L = \{a^i b^j c^k \mid i = 0 \text{ or } k < j, \text{ for } i, j, k \in \mathbb{N}\}$$

Apply the pumping lemma. Does it work? What does this mean?

Exercise 2: $\equiv_{\mathcal{A}}$ Equivalence

Let $\mathcal{A} = (\Sigma, Q, \rightarrow, q_0, F)$ be a nondeterministic finite automaton. For words $u, v \in \Sigma^*$ we define the relation $\equiv_{\mathcal{A}}$ as

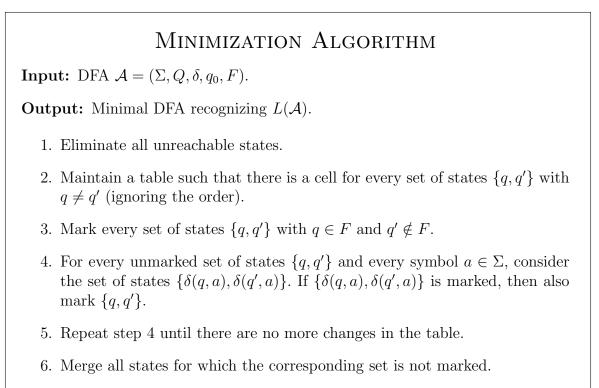
 $u \equiv_{\mathcal{A}} v$ iff there is $q \in Q$ such that $q_0 \xrightarrow{u} q$ and $q_0 \xrightarrow{v} q$.

Show that $\equiv_{\mathcal{A}}$ is not an equivalence relation for nondeterministic finite automata.

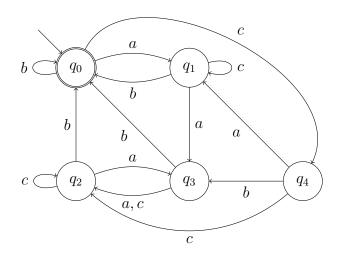
Hint: You should give a counterexample: an NFA \mathcal{A} and two words $u, v \in \Sigma^*$ such that at least one of the properties of an *equivalence relation* is not satisfied for $\equiv_{\mathcal{A}}$.

Exercise 3: Minimal Automaton

Consider the following algorithm:



Apply this algorithm to the following DFA.



Provide the minimal automaton and the final marking table.

Exercise 4: Context-free Grammars

Consider the context-free grammar G = (N, T, P, S) with $N = \{S\}, T = \{a, b\}$ and

$$P = \{ S \to \varepsilon, \\ S \to aSbS, \\ S \to bSaS \}.$$

- (a) Provide a derivation for the word *abbbaa*.
- (b) Which language L is generated by G? Provide a simple formulation of L and describe why $L(G) \subseteq L$ holds (we ignore $L \subseteq L(G)$).
- (c) Is G unambiguous? Justify your answer.

Exercise 5: Logical Formulae as Context-free Grammar

Consider the finite set $X = \{x_1, \ldots, x_n\}$ of variables. In propositional logic, a *formula* is defined inductively as follows:

- Every variable $x \in X$ is a formula.
- If ϕ is a formula, then $\neg \phi$ is a formula.
- If ϕ, ψ are formulae, then $(\phi \land \psi)$ and $(\phi \lor \psi)$ are formulae.
- (a) Provide a context-free grammar that generates the language of all formulae with variables from X. Use the following terminal symbols:

$$T = X \cup \{\neg, \}, (, \land, \lor\}$$

(b) Exemplarily give two words $w_1, w_2 \in T^*$ generated by your grammar (which should be formulae) and two words $w_3, w_4 \in T^*$ not generated by your grammar (which should not be formulae).