

Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling

7. Exercise Sheet for the Tutorial Computer Science Theory

Exercise 1: (Un-)Decidable Problems

Let L_1 and L_2 be undecidable languages and let L_3 and L_4 be languages such that $L_3 \subseteq L_1 \subseteq L_4$. Prove or refute the following statements:

- (a) $L_1 \cap L_2$ is undecidable.
- (b) $L_1 \cup L_2$ is undecidable.
- (c) L_3 is undecidable.
- (d) L_4 is undecidable.

Exercise 2: Reduction I (Halting on Every Input I)

Prove that the language

 $U = \{ bw_{\tau} \in B^* \mid \tau \text{ halts on every input} \}$

is undecidable. For this, reduce a problem to U that is known to be undecidable.

Hint: Use H_0 .

Exercise 3: (optional*) Halting on Every Input II

*This exercise is not mandatory.

Consider the language

 $U' = \{ bw_{\tau} 00k \in B^* \mid \tau \text{ halts on every input after at most } k \text{ steps} \}$

Compare U' to U from the preceding exercise. Is U' decidable? Prove your claim.

Exercise 4: (optional^{*}) Reduction II (Writing 23)

*This exercise is not mandatory.

Prove that the set

 $W_{23} = \{ bw_{\tau} 00u \in B^* \mid \tau \text{ applied to } u \text{ eventually writes the binary} \\ \text{encoding of } 23 \text{ on the tape} \}$

is undecidable. For this, reduce a problem to W_{23} that is known to be undecidable.

Hint: Use H. You may want to change the tape alphabet in a proper way.

Exercise 5: (optional*) Not Halting on Some Input I

*This exercise is not mandatory.

Consider the language

 $V = \{ bw_{\tau} 00k \in B^* \mid \tau \text{ does not halt on some input after at most } k \text{ steps} \}$ $\cup \{ w \in B^* \mid w \text{ is not of the form } bw_{\tau} 00k \text{ for some Turing machine } \tau \text{ and some } k \}.$

Compare V to U' from exercise 3. Is V recursively enumerable? Prove your claim.

Exercise 6: Reduction III (Not Halting on Some Input II)

Let N be the language of all encodings of Turing machines which do not halt on at least one input.

 $N = \{ bw_{\tau} \in B^* \mid \text{there is } u \in B^* \text{ such that } \tau \text{ applied to } u \text{ does not halt} \}$

Is N decidable? Is N recursively enumerable? Prove your claims.

Hint: Use $\overline{H_0}$ in a reduction.