

Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling

May 20th, 2014

1. Presence Exercise Sheet for the Lecture Computer Science Theory

Exercise 1: Sets

(a) Two sets are equal if and only if _____

Write down all elements (without the duplicates) for the twelve sets below.

1:		2:	_ 3:	:
<u>(4):</u>		5:	6	:
(7):		8:		:
(10):		(11):):
Draw lines betw	veen those set	s which are equal.		
	\bigcirc	2	3	
	Ø	$\{\diamondsuit, \heartsuit\}$	{}	
$\textcircled{4} \{\diamondsuit \heartsuit\}$				{{♣}} (5)
$\textcircled{6} \{\{\}, \emptyset\}$				{ \$, \$ } (7)
8 {{}}				$\{\heartsuit,\diamondsuit\}$
	{Ø}	{♣}	$\{\emptyset,\diamondsuit\}$	

(11)

(10)

(12)

- (b) Apply the following set operations and give the number (i), yes/no (ii–iii), and the resulting sets (iv–vi).
 - (i) |S| for finite set S is defined as _____

|{}| = _____ $|\{\heartsuit,\clubsuit\}| = _$ $|\{\{\},\{\diamondsuit\}\}| = _$ $|\{\{\heartsuit, \clubsuit\}\}| = _$ (ii) $e \in S$ if and only if _____ $\{\} \in \{\}$ $\{\} \in \{\heartsuit, \{\}\}$ $\Diamond \in \{\heartsuit, \{\diamondsuit\}\}$ $\{\heartsuit\} \notin \{\heartsuit, \{\diamondsuit\}\}$ (iii) $S_1 \subseteq S_2$ if and only if _____ $\{\} \subseteq \{\}$ $\{\} \subseteq \{\{\diamondsuit\}\}$ $\{\diamondsuit,\clubsuit\}\subseteq\{\diamondsuit,\heartsuit,\{\clubsuit\}\}$ $\{\diamondsuit, \clubsuit\} \subseteq \{\clubsuit, \heartsuit, \diamondsuit\}$ (iv) $S_1 \cup S_2$ is the set which _____ $\{\}\cup\{\}=___$ $\{\}\cup\{\heartsuit\}=_$ $\{\diamondsuit,\heartsuit\}\cup\{\heartsuit,\clubsuit\}=_$ (v) $S_1 \cap S_2$ is the set which _____ $\{\} \cap \{\} = _$ $\{\} \cap \{\heartsuit\} = _$ $\{\diamondsuit,\heartsuit\}\cap\{\heartsuit,\clubsuit\}=_$ (vi) $S_1 \setminus S_2$ is the set which _____ $\{\clubsuit\}\setminus\{\}=_$ $\{\}\setminus\{\heartsuit\}=_$

 $\{\diamondsuit, \heartsuit\} \setminus \{\heartsuit, \clubsuit\} =$

Exercise 2: Natural numbers as a language

Consider the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Give a definition for a language L over Σ containing exactly all natural numbers (\mathbb{N}) without leading zeros. This means we do not want to have 1 and 001 (but only 1).

Hint: You can define the language directly or you can apply set operations. Ask yourself: are we interested in how many leading zeros a word has? Do not forget 0 (zero).

Exercise 3: Deterministic finite automata

Consider the following picture:

 $\textcircled{1} - \fbox{2} - \Huge{3}$

We start at (1) and want to get to (3). We can move from (1) to (2), from (2) to both (1) and (3), and from (3) to (2).

- (a) Your task is to represent the language of all valid moves from (1) to (3) as a DFA.
 - (i) Let $\Sigma = \{r\}$. For each r we go one step to the right.
 - (ii) Let $\Sigma = \{\ell\}$. For each ℓ we go one step to the left.
 - (iii) Let $\Sigma = \{r, \ell\}.$
- (b) How many words are accepted in each case?
- (c) How can we modify the automaton from (iii) if
 - (i) we start at (2)?
 - (ii) we want to get to (2) instead?
 - (iii) we want to get to (2) or (3)?

Exercise sheet 3

Exercise 1: Reverse Operator

Consider $\Sigma = \{a, b, c\}.$

(a) What is the language $L(\mathcal{A})$ and its reverse language $L(\mathcal{A})^R$ for the NFA \mathcal{A} below?

Construct an NFA that recognizes the reverse language $L(\mathcal{A})^R$.

(b) What is the problem with the construction if we have more than one final state?

Exercise 2: Regular Expressions

Construct regular expressions for the following languages over the alphabet $\Sigma = \{a, b\}$.

- (a) $L_1 = \{a, b, ab\}$
- (b) $L_2 = \Sigma^*$
- (c) $L_3 = \Sigma^+$
- (d) $L_4 = \{ w \in \Sigma^* \mid w \text{ starts with } a \}$

Exercise 3: Pumping Lemma

The proof always works as follows:

- (a) Assume the language L is regular. Then the pumping lemma must hold.
- (b) Assume some $n \in \mathbb{N}$ from the pumping lemma. You must *not* make any assumptions on n.
- (c) Smartly choose a word $z \in L$ (usually depending on n) with $|z| \ge n$.
- (d) Assume some decomposition z = uvw (with the rules given in the pumping lemma).
- (e) Smartly choose some $i \in \mathbb{N}$ such that $uv^i w \notin L$ (often i = 0 or i = 2 suffices).

With this "algorithm" in mind, read the example provided in the lecture script on page 27. In general, you may need to make a case distinction in step (d). Then for each case you have to find some i in the next step. But in this exercise it is not necessary.