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1. Lecture
Computer Science Theory

Chapter I – Basic definitions

§1 Modelling in theoretical computer science (pp. 1-2)

What we will learn (excerpts):

• automata (models for different views of a computer)

• applications of formal languages (regular expressions, formal grammars)

• What problems can never be solved by computers?

• What problems are (probably) hard to solve in practice?

§2 Logic, sets, relations and functions (pp. 2-4)

1.2.1 Sets (pp. 2-3)

• Sets are written in curly braces (only exception: the empty set is also written ∅).

• One way to denote finite sets is to explicitly enumerate the elements:

{element1, element2, . . . , elementn}

• Sets are unordered and do not contain duplicates.
They only exist in a mathematical world.

• Sets themselves can be elements of other sets. �(1(a))

• concepts and operations on sets S1, S2 and element e:

(a) cardinality: |S1|
(b) (non-)elementship: e ∈ S1 and e /∈ S2

(c) subset: S1 ⊆ S2

(d) union: S1 ∪ S2



(e) intersection: S1 ∩ S2

(f) difference: S1 \ S2
�(1(b))

• One of the most important infinite sets is N = {0, 1, 2, 3, . . . }.
This way of writing infinite sets is unsatisfactory and error-prone.

Another way to denote sets is by set comprehension. This way we can also write
down infinite sets :

{element | property}
Read: the set containing all elements for which the property holds.

• We distinguish between unbounded finiteness and infinity.

• For every set S we can define its powerset P(S) = {s | s ⊆ S}.

• For sets S1, S2 we define the Cartesian product S1 × S2 which denotes the set con-
taining all pairs where the first entry is from S1 and the second entry is from S2.

Note: A pair is also called tuple. In general, we can define n-tuples with n entries.
Tuples are written in normal braces and the order of the entries matters.

1.2.2 Relations (pp. 3-4)

We skip relations for this session.

§3 Alphabets, strings and languages (pp. 5-6)

We can model problems as formal languages, so we need to understand the concept.

• An alphabet Σ is a (finite) set of symbols/letters/characters.

• A word/string w is a finite sequence of symbols (possibly empty, ε).
|w| denotes the length of the word w, i.e., the number of symbols (|ε| = 0).

• Σ∗ denotes the set of all words over Σ.
Σ+ denotes the set of all nonempty words over Σ (i.e., Σ+ = Σ∗\{ε}, Σ∗ = Σ+∪{ε}).

• Two words can be concatenated in the obvious way.

• The terms substring, prefix, and suffix are defined in the obvious way.

• A formal language L is a set of words over an alphabet.
Thus we can perform usual set-theoretic operations (see previous section). �(2)

• Two languages L1, L2 can also be concatenated. The result is a language L3 with
exactly all possible concatenations of words from L1 and L2 (order matters!).

• We define the n-th power of a language L, Ln, and the Kleene closure, L∗:

Ln =

{
{ε} if n = 0

L · Ln−1 if n > 0
L∗ =

⋃
i∈N

Li

� solutions to exercises 1–3 on sheet 1�



Chapter II – Finite automata and regular languages

§1 Finite automata (pp. 9-14)

2.1.1 Deterministic finite automata

• We need a way to write down a (usually infinite) language in a formal way.
Idea: We construct a machine that reads a word and tells whether the word is in
the language (acceptance) or not (rejection).

• Simplest model: read the word from left to right and only use constant memory.

• This leads to the deterministic finite automaton (DFA). It reads a (finite) word
and after each symbol it changes its internal state. When the word is fully read, it
checks whether the current state is final (then the word is accepted) or not.

An automaton A represents its language L(A) “indirectly”: We say it decides for
every given w ∈ Σ∗ the question: w ∈ L(A)?

An algorithm decides a yes/no-problem if for every possible input it gives the correct
answer after a finite amount of time.

• Formally, we write A = (Σ, Q, δ, q0, F ) with

– finite input alphabet Σ,

– finite set of states Q,

– transition function δ,

– initial state q0 ∈ Q, and

– set of final states F ⊆ Q

• The next state only depends on the current state and the next symbol.

• In each state for each symbol in the alphabet there must be an outgoing transition.
�(3)

� solution to exercise 4 on sheet 1�

� hints for exercise sheet 3�


