
Prof. Dr. Andreas Podelski
Matthias Heizmann
Christian Schilling

June 18th & 24th, 2014

4. Lecture
Computer Science Theory

� solutions to exercises on sheet 4�

Chapter III – Context-free languages and push-

down automata (pp. 37-69)

§3 Pushdown automata (pp. 48-57)

It turns out that pushdown automata (PDAs) and context-free grammars
(CFGs) are equal in power, i.e., a language accepted by some PDA is gener-
ated by some CFG and vice versa.
As usual in this course, this can be proven by giving an algorithm which,
given a PDA (CFG), translates into a CFG (PDA) with the same language.
Hence it can be done by a computer. We do one direction – the other one is
much more complicated.

3.6 Theorem (CFG to PDA)
We want to construct a pushdown automaton A for a CFG G = (N, T, P, S)
whose language accepted with the empty stack is the same as the language
generated by G, i.e., Lε(A) = L(G).

Construction idea: We simulate the leftmost derivation in G. The stack is
used to keep track of the word derived by the grammar so far. There are two
cases:

(a) The topmost symbol is a terminal symbol, say, a. Then the PDA reads
a from the input string and removes it from the stack.

Formally, we introduce transitions (q, a)
a→ (q, ε) for each a ∈ T .

1



(b) The topmost symbol is a non-terminal symbol, say, A. Then the PDA
reads nothing (ε-transition) from the input string and replaces A with
the right-hand side u of some rule A→ u.

Formally, we introduce transitions (q, A)
ε→ (q, u) for each A ∈ N and

(A, u) ∈ P .

An interesting fact: We do not need more than one state. Altogether, the
components of our PDA A = (Σ, Q,Γ,→, q, Z0, F ) are defined as follows:

Σ = T,Q = {q},Γ = N ∪ T, Z0 = S, F = ∅, and → as described above

We skip the formal proof that the PDA is equivalent to the CFG. �(1)

§4 Closure properties (pp. 58-59)

If we have two context-free languages L1, L2, then we can construct context-
free grammars G1 = (N1, T, P1, S1), G2 = (N2, T, P2, S2) for them. We may
assume without loss of generality that N1 ∩N2 = ∅.
Context-free languages are closed under the following operations:

• union (L1 ∪ L2): new grammar with additional rule S → S1 | S2

• concatenation (L1 · L2): new grammar with additional rule S → S1S2

• iteration (L∗
1): new grammar with additional rule S → ε | S1S

• intersection with regular languages (skipped)

However, context-free languages are not closed under the following opera-
tions:

• intersection (L1 ∩ L2): take L1 = {ambmcn} and L2 = {ambncn}, then
L1 ∩ L2 = {anbncn}, which is not context-free (not shown)

• complement (L1): follows from L1 ∩ L2 = L1 ∪ L2

§5 Transformation in normal forms (pp. 60-62)

We skip this part in the interest of time.

Summary: There exist certain normal forms for context-free grammars. They
are useful for applying certain algorithms.

2



§6 Deterministic context-free languages (pp. 63-67)

We skip this part in the interest of time.

Summary: We can define deterministic PDAs. They are weaker than nonde-
terministic PDAs.

§7 Questions of decidability (pp. 68-69)

We skip this part in the interest of time.

Summary: The membership, emptiness, and finiteness problems are decid-
able for context-free languages.
The intersection, equivalence, and inclusion problems as well as the problem
whether a context-free grammar is unambiguous are undecidable.

3


