
Prof. Dr. Andreas Podelski
Matthias Heizmann
Christian Schilling

July 15th-16th, 2014

7. Lecture
Computer Science Theory

Chapter V – Non-computable functions – un-

decidable problems (pp. 97-122)

§2 Concrete undecidable problem: halting for Turing
machines (pp. 101-107)

Short repetition: We have shown that K, the special halting problem for
Turing machines, is undecidable.

K = {bw τ ∈ B∗ | τ applied to bw τ halts}

Note that it is important that we talk about all TMs and all input words here.
Given a TM and a word, there is always a trivial deciding TM (although we
may not know which one, but we are only interested in the existence).

� hints for exercises 1, 3 on sheet 7�

The rest of the course will be centered around the following definition.

Definition 2.4 Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be languages. Then L1 is
reducible to L2, shortly L1 ≤ L2, if there is a total computable function
f : Σ∗

1 → Σ∗
2 so that for all w ∈ Σ∗

1 it holds that: w ∈ L1 ⇔ f(w) ∈ L2. We
also write: L1 ≤ L2 using f . We will see some examples and use the same
idea in the last chapter again.

Definition 2.6 The (general) halting problem for Turing machines is the
language

H = {bw τ00u ∈ B∗ | τ applied to u halts}.

1



Theorem 2.7 H is undecidable.

Definition 2.8 The blank tape halting problem for Turing machines is the
language

H0 = {bw τ ∈ B∗ | τ applied to the blank tape halts}.

Theorem 2.9 H0 is undecidable. As a summary, talking about all Turing
machines seems impossible. Let us restrict ourselves to one fixed Turing
machine.

Definition 2.10 The halting problem for a given Turing machine τ is the
language

Hτ = {w ∈ B∗ | τ applied to u halts}.

For many TMs this language is decidable. But not for all of them, namely
those which read and interpret TMs themselves.

Definition 2.11 A Turing machine τuni with the input alphabet B is called
universal if for the function hτuni computed by τuni the following holds:

hτuni (bw τ00u) = hτ (u),

i.e., τuni can simulate every Turing machine τ applied to input string u ∈ B∗.

Theorem 2.13 Hτuni is undecidable.

Thus we have shown the following chain: K ≤ H = Hτuni ≤ H0.

� hints for exercises 2, 4 on sheet 7�

§3 Recursive enumerability (pp. 107-110)

We soften our notions of computation and decision in order to capture the
new problems we have seen.

Definition 3.1 A language L ⊆ Σ∗ is called recursively enumerable, shortly
r.e., if L = ∅ or there exists a total (Turing-)computable function β : N→ Σ∗

with
L = β(N) = {β(0), β(1), β(2), . . . },

i.e., we can enumerate all elements with a Turing machine.

2



Definition 3.2 A language L ⊆ Σ∗ is called semi-decidable if the partial
characteristic function of L

ψL : Σ∗ ⇀ {1}

is computable. The partial function ψL is defined as follows:

ψL(v) =

{
1 if v ∈ L
undef. otherwise

Remark For all languages L ⊆ Σ∗ it holds that:

(a) L is semi-decidable ⇔ L is Turing-acceptable.

(b) L is decidable ⇔ L and L are semi-decidable.

Lemma 3.3 For all languages L ⊆ Σ∗ it holds that: L is recursively enu-
merable ⇔ L is semi-decidable.

Theorem 3.4 For all languages L ⊆ Σ∗ the following statements are equiv-
alent:

(a) L is recursively enumerable.

(b) L is the range of results of a Turing machine τ , i.e.,

L = {v ∈ Σ∗ | ∃w ∈ Σ∗ with hτ (w) = v}.

(c) L is semi-decidable.

(d) L is the halting range of a Turing machine τ , i.e.,

L = {v ∈ Σ∗ | hτ (v) exists}.

(e) L is Turing-acceptable.

(f) L is Chomsky-0.

Corollary 3.5 For all languages L ⊆ Σ∗ it holds that: L is decidable
(recursive) ⇔ L and L = Σ∗ \ L are recursively enumerable.

� hints for exercise 5 on sheet 7�

3



Lemma 3.6 Let L1 ≤ L2. Then it holds: If L2 is recursively enumerable,
then L1 is also recursively enumerable.

Theorem 3.7 H0 ⊆ B∗ is recursively enumerable.

Theorem 3.8 The halting problems K,H,H0, and Hτuni are recursively
enumerable, but not decidable. Their complementary problems are not re-
cursively enumerable.

� hints for exercise 6 on sheet 7�

§4 Automatic program verification (pp. 110-112)

We skip this part in the interest of time.

Summary: The program verification problem (also called model checking
problem) is given as follows:

Given: program P and specification S (S ⊆ TB,B)
Question: Does P satisfy the specification S?

It is undecidable except for the trivial cases S = ∅ and S = TB,B.

§5 Grammar problems and Post correspondence prob-
lem (pp. 112-119)

We skip this part in the interest of time.

Summary: Another undecidable problem is introduced. It is used to prove
results of the following section.

§6 Results on undecidability of context-free languages
(pp. 120-122)

We skip this part in the interest of time.

Summary: For context-free languages the intersection problem, the equiva-
lence problem, the inclusion problem, and the ambiguity problem are shown
undecidable.

4



Prime number encoding of pairs

For the proof of Lemma 3.3 we needed a way to encode pairs into natural
numbers. Here we describe how this is possible. For this we exploit the fact
that every positive integer has a unique decomposition into prime numbers
(see Wikipedia).
Let w ∈ Σ∗ be a word and k ∈ N be a natural number.

We want to know the tuple (w, k) that is encoded by some natural number
n (note: not every number encodes such a pair, but this can be checked).

In other words: Given a natural number n, we want to decode it to get the
pair (w, k) (or we want to know if no such pair exists).

1) In a first step, we show how we can decode a word w from a natural
number.

Let Σ = {a1, . . . , am} and nr : Σ −→ N be a function returning the index
number of some symbol in Σ, i.e., nr(ai) = i for i = 1, . . . , n.

Let pj be the j-th prime number, i.e.,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, . . .

Let us write w as w = w1w2 . . . w` if w has length ` (w = ε if ` = 0).

The prime number encoding of w is the function π : Σ∗ −→ N with

π(ε) = 1

π(w1 . . . w`) = p
nr(w1)
1 · . . . · pnr(w`)

` =
∏̀
i=1

p
nr(wi)
i

Example: Let Σ = {a1, a2, a3, a4}. The number n = 720 is uniquely decom-
posed into the prime numbers 2 · 2 · 2 · 2 · 3 · 3 · 5, which can be written as
24 · 32 · 51. Thus it encodes the word w = a4a2a1, because

720 = 24 · 32 · 51 = p41 · p22 · p13 = π(a4a2a1).

2) Now we can decode pairs (w, k). For this we use the same idea again. We
define the function

π2 : N2 −→ N

for which we need to first encode w into a number π(w) (see above)

π2(π(w), k) = p
π(w)
1 · pk2

5

http://en.wikipedia.org/wiki/Integer_factorization#Prime_decomposition


Example: We continue the example. The number n = 2720 ·350 (it is too big
to write down) is already (uniquely) decomposed into prime numbers. Thus
it encodes the pair (w, k) for w = a4a2a1 and k = 50, because

n = 2720 · 350 = p7201 · p502 = π2(720, 50) = π2(π(a4a2a1), 50).

6


