Prof. Dr. Andreas Podelski
July 15th-16th, 2014
Matthias Heizmann
Christian Schilling

## 7. Lecture Computer Science Theory

## Chapter V - Non-computable functions - undecidable problems (pp. 97-122)

## $\S 2$ Concrete undecidable problem: halting for Turing machines (pp. 101-107)

Short repetition: We have shown that $K$, the special halting problem for Turing machines, is undecidable.

$$
K=\left\{b w_{\tau} \in B^{*} \mid \tau \text { applied to } b w_{\tau} \text { halts }\right\}
$$

Note that it is important that we talk about all TMs and all input words here. Given a TM and a word, there is always a trivial deciding TM (although we may not know which one, but we are only interested in the existence).
hints for exercises 1,3 on sheet 7

The rest of the course will be centered around the following definition.
Definition 2.4 Let $L_{1} \subseteq \Sigma_{1}^{*}$ and $L_{2} \subseteq \Sigma_{2}^{*}$ be languages. Then $L_{1}$ is reducible to $L_{2}$, shortly $L_{1} \leq L_{2}$, if there is a total computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ so that for all $w \in \Sigma_{1}^{*}$ it holds that: $w \in L_{1} \Leftrightarrow f(w) \in L_{2}$. We also write: $L_{1} \leq L_{2}$ using $f$. We will see some examples and use the same idea in the last chapter again.

Definition 2.6 The (general) halting problem for Turing machines is the language

$$
H=\left\{b w_{\tau} 00 u \in B^{*} \mid \tau \text { applied to } u \text { halts }\right\} .
$$

Theorem 2.7 $H$ is undecidable.

Definition 2.8 The blank tape halting problem for Turing machines is the language

$$
H_{0}=\left\{b w_{\tau} \in B^{*} \mid \tau \text { applied to the blank tape halts }\right\} .
$$

Theorem $2.9 \quad H_{0}$ is undecidable. As a summary, talking about all Turing machines seems impossible. Let us restrict ourselves to one fixed Turing machine.

Definition 2.10 The halting problem for a given Turing machine $\tau$ is the language

$$
H_{\tau}=\left\{w \in B^{*} \mid \tau \text { applied to } u \text { halts }\right\} .
$$

For many TMs this language is decidable. But not for all of them, namely those which read and interpret TMs themselves.

Definition 2.11 A Turing machine $\tau_{u n i}$ with the input alphabet $B$ is called universal if for the function $h_{\tau_{u n i}}$ computed by $\tau_{u n i}$ the following holds:

$$
h_{\tau_{u n i}}\left(b w_{\tau} 00 u\right)=h_{\tau}(u),
$$

i.e., $\tau_{u n i}$ can simulate every Turing machine $\tau$ applied to input string $u \in B^{*}$.

Theorem $2.13 \quad H_{\tau_{u n i}}$ is undecidable.
Thus we have shown the following chain: $K \leq H=H_{\tau_{u n i}} \leq H_{0}$.
hints for exercises 2, 4 on sheet 7

## §3 Recursive enumerability (pp. 107-110)

We soften our notions of computation and decision in order to capture the new problems we have seen.

Definition 3.1 A language $L \subseteq \Sigma^{*}$ is called recursively enumerable, shortly $r . e .$, if $L=\emptyset$ or there exists a total (Turing-)computable function $\beta: \mathbb{N} \rightarrow \Sigma^{*}$ with

$$
L=\beta(\mathbb{N})=\{\beta(0), \beta(1), \beta(2), \ldots\}
$$

i.e., we can enumerate all elements with a Turing machine.

Definition 3.2 A language $L \subseteq \Sigma^{*}$ is called semi-decidable if the partial characteristic function of $L$

$$
\psi_{L}: \Sigma^{*} \rightharpoonup\{1\}
$$

is computable. The partial function $\psi_{L}$ is defined as follows:

$$
\psi_{L}(v)= \begin{cases}1 & \text { if } v \in L \\ \text { undef. } & \text { otherwise }\end{cases}
$$

Remark For all languages $L \subseteq \Sigma^{*}$ it holds that:
(a) $L$ is semi-decidable $\Leftrightarrow L$ is Turing-acceptable.
(b) $L$ is decidable $\Leftrightarrow L$ and $\bar{L}$ are semi-decidable.

Lemma 3.3 For all languages $L \subseteq \Sigma^{*}$ it holds that: $L$ is recursively enumerable $\Leftrightarrow L$ is semi-decidable.

Theorem 3.4 For all languages $L \subseteq \Sigma^{*}$ the following statements are equivalent:
(a) $L$ is recursively enumerable.
(b) $L$ is the range of results of a Turing machine $\tau$, i.e.,

$$
L=\left\{v \in \Sigma^{*} \mid \exists w \in \Sigma^{*} \text { with } h_{\tau}(w)=v\right\} .
$$

(c) $L$ is semi-decidable.
(d) $L$ is the halting range of a Turing machine $\tau$, i.e.,

$$
L=\left\{v \in \Sigma^{*} \mid h_{\tau}(v) \text { exists }\right\} .
$$

(e) $L$ is Turing-acceptable.
(f) $L$ is Chomsky- 0 .

Corollary 3.5 For all languages $L \subseteq \Sigma^{*}$ it holds that: $L$ is decidable (recursive) $\Leftrightarrow L$ and $\bar{L}=\Sigma^{*} \backslash L$ are recursively enumerable.
hints for exercise 5 on sheet 7

Lemma 3.6 Let $L_{1} \leq L_{2}$. Then it holds: If $L_{2}$ is recursively enumerable, then $L_{1}$ is also recursively enumerable.

Theorem 3.7 $H_{0} \subseteq B^{*}$ is recursively enumerable.

Theorem 3.8 The halting problems $K, H, H_{0}$, and $H_{\tau_{u n i}}$ are recursively enumerable, but not decidable. Their complementary problems are not recursively enumerable.
hints for exercise 6 on sheet 7

## §4 Automatic program verification (pp. 110-112)

We skip this part in the interest of time.
Summary: The program verification problem (also called model checking problem) is given as follows:
Given: program $\mathcal{P}$ and specification $\mathcal{S} \quad\left(\mathcal{S} \subseteq \mathcal{T}_{B, B}\right)$
Question: Does $\mathcal{P}$ satisfy the specification $\mathcal{S}$ ?
It is undecidable except for the trivial cases $\mathcal{S}=\emptyset$ and $\mathcal{S}=\mathcal{T}_{B, B}$.

## §5 Grammar problems and Post correspondence problem (pp. 112-119)

We skip this part in the interest of time.
Summary: Another undecidable problem is introduced. It is used to prove results of the following section.

## $\S 6$ Results on undecidability of context-free languages (pp. 120-122)

We skip this part in the interest of time.
Summary: For context-free languages the intersection problem, the equivalence problem, the inclusion problem, and the ambiguity problem are shown undecidable.

## Prime number encoding of pairs

For the proof of Lemma 3.3 we needed a way to encode pairs into natural numbers. Here we describe how this is possible. For this we exploit the fact that every positive integer has a unique decomposition into prime numbers (see Wikipedia).
Let $w \in \Sigma^{*}$ be a word and $k \in \mathbb{N}$ be a natural number.
We want to know the tuple $(w, k)$ that is encoded by some natural number $n$ (note: not every number encodes such a pair, but this can be checked).
In other words: Given a natural number $n$, we want to decode it to get the pair ( $w, k$ ) (or we want to know if no such pair exists).

1) In a first step, we show how we can decode a word $w$ from a natural number.

Let $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ and $n r: \Sigma \longrightarrow \mathbb{N}$ be a function returning the index number of some symbol in $\Sigma$, i.e., $n r\left(a_{i}\right)=i$ for $i=1, \ldots, n$.
Let $p_{j}$ be the $j$-th prime number, i.e.,

$$
p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, \ldots
$$

Let us write $w$ as $w=w_{1} w_{2} \ldots w_{\ell}$ if $w$ has length $\ell(w=\varepsilon$ if $\ell=0)$.
The prime number encoding of $w$ is the function $\pi: \Sigma^{*} \longrightarrow \mathbb{N}$ with

$$
\begin{aligned}
\pi(\varepsilon) & =1 \\
\pi\left(w_{1} \ldots w_{\ell}\right) & =p_{1}^{n r\left(w_{1}\right)} \cdot \ldots \cdot p_{\ell}^{n r\left(w_{\ell}\right)}=\prod_{i=1}^{\ell} p_{i}^{n r\left(w_{i}\right)}
\end{aligned}
$$

Example: Let $\Sigma=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. The number $n=720$ is uniquely decomposed into the prime numbers $2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$, which can be written as $2^{4} \cdot 3^{2} \cdot 5^{1}$. Thus it encodes the word $w=a_{4} a_{2} a_{1}$, because

$$
720=2^{4} \cdot 3^{2} \cdot 5^{1}=p_{1}^{4} \cdot p_{2}^{2} \cdot p_{3}^{1}=\pi\left(a_{4} a_{2} a_{1}\right)
$$

2) Now we can decode pairs $(w, k)$. For this we use the same idea again. We define the function

$$
\pi_{2}: \mathbb{N}^{2} \longrightarrow \mathbb{N}
$$

for which we need to first encode $w$ into a number $\pi(w)$ (see above)

$$
\pi_{2}(\pi(w), k)=p_{1}^{\pi(w)} \cdot p_{2}^{k}
$$

Example: We continue the example. The number $n=2^{720} \cdot 3^{50}$ (it is too big to write down) is already (uniquely) decomposed into prime numbers. Thus it encodes the pair $(w, k)$ for $w=a_{4} a_{2} a_{1}$ and $k=50$, because

$$
n=2^{720} \cdot 3^{50}=p_{1}^{720} \cdot p_{2}^{50}=\pi_{2}(720,50)=\pi_{2}\left(\pi\left(a_{4} a_{2} a_{1}\right), 50\right) .
$$

