

Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling July 22nd-23rd, 2014

8. Lecture Computer Science Theory

Chapter VI – Complexity (pp. 123-138)

§1 Computational complexity (pp. 123-126)

Before, we always abstracted away from runtime and memory usage. Now we consider these two measurements to compare problems (with focus on runtime).

There are two important bounds for algorithmic problems:

- *upper bound*, meaning that this problem is solvable within that bound proven by giving an algorithm which solves the problem in this bound
- *lower bound*, meaning that there are instances of this problem which cannot be solved more efficiently

no general proof method

Our model for reasoning: Turing machines. We can use k-tape TMs to get more realistic results (a TM has no random access, opposite to a computer).

Definition 1.1 Let $f : \mathbb{N} \to \mathbb{N}$ be a function and τ be a non-deterministic TM with several tapes and input alphabet Σ .

- τ has the time complexity f(n) if for every $w \in \Sigma^*$ of length n it holds: τ applied to the input w terminates for every possible computation in at most f(n) steps.
- (ii) τ has the space complexity f(n) if for every $w \in \Sigma^*$ of length n holds: τ applied to the input w uses for every possible computation on every tape at most f(n) fields.

Definition 1.2 Let $f : \mathbb{N} \to \mathbb{N}$.

 $\begin{aligned} \texttt{DTIME}(f(n)) &= \{L \mid \text{there exists a deterministic TM with several tapes} \\ & \text{which has time complexity } f(n) \text{ and accepts } L \} \\ \texttt{NTIME}(f(n)) &= \{L \mid \text{there is a non-deterministic TM with several tapes} \\ & \text{which has time complexity } f(n) \text{ and accepts } L \} \\ \texttt{DSPACE}(f(n)) &= \{L \mid \text{there exists a deterministic TM with several tapes} \\ & \text{which has space complexity } f(n), \text{ and accepts } L \} \\ \texttt{NSPACE}(f(n)) &= \{L \mid \text{there is a non-deterministic TM with several tapes} \\ & \text{which has space complexity } f(n), \text{ and accepts } L \} \\ \end{aligned}$

Because a TM can visit at most one new field on its tapes in each computational step, we have:

Definition 1.3 Let $g : \mathbb{N} \to \mathbb{N}$. We define:

 $\mathcal{O}(g(n)) = \{ f : \mathbb{N} \to \mathbb{N} \mid \exists n_0, k \in \mathbb{N} : \forall n \ge n_0 : f(n) \le k \cdot g(n) \}$

 $\mathcal{O}(g(n))$ is the class of all functions f which are *bounded* by a constant multiplied by g for sufficiently large values of n.

$\S2$ The classes P and NP (pp. 127-132)

Definition 2.1

$$P = \bigcup_{\substack{p \text{ polynomial in } n \\ p \text{ polynomial in } n \\ PSPACE} = \bigcup_{\substack{p \text{ polynomial in } n \\ p \text{ polynomial in } n \\ PSPACE} DSPACE(p(n))$$
$$NPSPACE = \bigcup_{\substack{p \text{ polynomial in } n \\ p \text{ polynomial in } n \\ PSPACE(p(n)) \\ PSP$$

Theorem 2.2 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

Open problem in computer science: Are the inclusions strict or does the equality hold? We only know $P \subsetneq EXPTIME$.

all problems	resp.	languages
--------------	-------	-----------

computable resp. decidable	
EXPTIME	
PSPACE	
NP	
P NPC	
L	

- P: Construct the right solution deterministically and in polynomial time.
- NP: Guess a solution proposal non-deterministically and then verify / check deterministically and in polynomial time whether this proposal is right.

Examples of problems from the class NP

(a) **Problem of Hamiltonian path**

Given: A finite graph with n vertices. Question: Does the graph contain a Hamiltonian path, i.e., a path which visits each vertex exactly once?

(b) Traveling salesman problem

Given: A finite, complete graph with n vertices and associated with every edge a natural number (the length/weight/cost), as well as a number $k \in \mathbb{N}$.

Question: Is there a tour of length $\leq k$, i.e., is there a cycle in the graph with length $\leq k$ which visits each vertex at least once?

(3) Satisfiability problem for Boolean expressions (shortly SAT) Given: A Boolean expression B, i.e., an expression which consists only of variables x_1, x_2, \ldots, x_n connected by operators \neg (not), \land (and) and \lor (or), as well as by brackets.

Question: Is B satisfiable, i.e., is there an assignment of 0 and 1 to the Boolean variables x_1, x_2, \ldots, x_n in B such that B evaluates to 1?

While thinking about polynomial solutions for these problems, a subclass of NP was found, namely the class NPC of the so called *NP-complete* problems. These are the hardest problems in NP and if one of them is found to be

polynomial, we immediately have a procedure to solve *all* problems in NP polynomially. This is why it is very unlikely that P = NP.

Today more than 1000 problems are known to be in NPC. Many of them are practically relevant.

Definition 2.3 Let $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ be languages. Then L_1 is called *polynomially-time reducible to* L_2 , shortly

$$L_1 \leq_p L_2,$$

if there is a function $f: \Sigma_1^* \to \Sigma_2^*$ which is total and computable with a polynomial time complexity, such that for all $w \in \Sigma_1^*$ it holds that

$$w \in L_1 \Leftrightarrow f(w) \in L_2.$$

We also say: $L_1 \leq_p L_2$ using f.

Definition 2.4 A language L_0 is called *NP-hard* if for all $L \in NP$ it holds that $L \leq_p L_0$.

A language L_0 is called *NP-complete* if $L_0 \in NP$ and L_0 is NP-hard.

Note that having only one of these properties is not helpful:

- If $L_0 \in NP$, then it might also be that $L_0 \in P$ (assuming $P \neq NP$).
- If L_0 is NP-hard, then it might be of exponential or worse complexity.

Lemma 2.5 Let $L_1 \leq_p L_2$. Then it holds that:

- (a) If $L_2 \in P$ holds, then $L_1 \in P$ holds as well.
- (b) If $L_2 \in NP$ holds, then $L_1 \in NP$ holds as well.
- (c) If L_1 is NP-complete and $L_2 \in NP$ holds, then L_2 is also NP-complete.

Corollary 2.6 Let *L* be an NP-complete language. Then it holds that $L \in P \Leftrightarrow P = NP$.

Example reduction We reduce the Hamiltonian path problem (HPP) to the traveling salesman problem (TSP). We show this by an intermediate reduction for the Hamiltonian cycle/circuit problem (HCP). HCP is almost the same as HPP, only that we want a cycle now (i.e., the path should start and end at the same vertex, i.e., one vertex is visited twice). Obviously, HCP is also an NP problem (why?).

(a) Show HPP \leq_p HCP.

<u>Construction</u>:

input: finite graph G = (V, E)output: finite graph G' = (V', E') with

- $V' = V \cup \{v_0\}, v_0 \notin V$, so we have the old vertices plus one extra vertex v_0
- $E' = E \cup \{(v, v_0) \mid v \in V\}$, so we have the old edges plus an edge from every old vertex to v_0 .

This construction is total (recognizing a proper input is simple) and computable in polynomial time (we need to add one vertex and |V| edges, possible in O(|V| + |E|)).

We need to show that $G \in \text{HPP} \Leftrightarrow (G', k) \in \text{HCP}$.

" \Rightarrow " If there is a Hamiltonian path in G, say, from v_1 to v_2 , then we can close the cycle by taking the edge (v_2, v_0) to v_0 , followed by taking the edge (v_1, v_0) to v_1 in G'.

" \Leftarrow " If there is a Hamiltonian cycle G', then every vertex is visited exactly once, especially v_0 . We find a Hamiltonian path in G by removing those two transitions from and to v_0 on the cycle.

(b) Show HCP \leq_p TSP.

<u>Construction</u>:

input: finite graph G = (V, E)

output: tuple (G', k), where

- G' = (V, E') is a complete graph with E' has all edges from E with weight 1 and all possible edges not in E with weight 2
- k = |V| is a natural number equal to the number of vertices.

This construction is total (recognizing a proper input is simple) and computable in polynomial time (there are $\mathcal{O}(|V|^2)$ possible edges).

We need to show that $G \in \text{HCP} \Leftrightarrow (G', k) \in \text{TSP}$.

" \Rightarrow " If there is a Hamiltonian cycle in G, then there is a tour in G' of weight k, namely the same cycle.

" \Leftarrow " If there is a tour in G' of weight k, it means that every edge has weight 1. This means these edges were already present in G, so we have a Hamiltonian cycle in G, namely the same as the tour.

(c) We have shown HPP \leq_p HCP \leq_p TSP. Because HPP is known to be NP-complete and thus NP-hard, we have shown that HCP and TSP are NP-hard. Since HCP and TSP are NP problems, they are even NP-complete.

Some NP-complete problems can be slightly modified and then polynomially solved. For instance, the Eulerian path problem asks for a path through a graph which visits each edge exactly once (compare to the Hamiltonian path problem). This is polynomially solvable (linear in the size of the graph).

A typical way to tackle NP-complete problems in practice is finding good heuristics. Remember that lower bounds only have to hold for *some* instances, so many instances might be simple to solve.

There exist important NP-complete problems for which very good approximation algorithms (e.g., the result is always at most 10% away from the optimum) or probability algorithms (e.g., the result is correct in 90% of all cases) are known.

§3 The satisfiability problem for Boolean expressions (pp. 133-138)

We skip this part in the interest of time.

Summary: The "mother of all NP-complete problems", SAT, is proven to be NP-complete. The proof is not very hard, but very technical.