Prof. Dr. Andreas Podelski
May 20th, 2014
Matthias Heizmann
Christian Schilling

1. Presence Exercise Sheet for the Lecture Computer Science Theory
 With Proposals for Solutions

Exercise 1: Sets

(a) Two sets are equal if and only if they contain the same elements.

Write down all elements (without the duplicates) for the twelve sets below.
(1): (none)
(2): \diamond, \odot
(3): (none)
(4): $\Delta \delta$
(5): $\{\boldsymbol{\phi}\}$
(6): $\underline{\}}$
(7):
(8): $\underline{\}}$
(9): $\diamond, \stackrel{\diamond}{2}$
(10): \{\}
(11):
(12): $\underline{\}, \diamond}$

Draw lines between those sets which are equal.
(1)
(2)
(3)

$\{\{\boldsymbol{\phi}\}\}$ (5)
(6) $\{\}, \emptyset\}$
(8)

$\{\emptyset\}$
\{d\}

(b) Apply the following set operations and give the number (i), yes/no (ii-iii), and the resulting sets (iv-vi).
(i) $|S|$ for finite set S is defined as the number of elements in S.

$$
\begin{aligned}
|\} \mid & =\underline{0} \\
|\{\varrho, \boldsymbol{\psi}\}| & =\underline{2} \\
|\{\},\{\Delta\}\} \mid & =\underline{2} \\
|\{\{\rho, \boldsymbol{\omega}\}\}| & =\underline{1}
\end{aligned}
$$

(ii) $e \in S$ if and only if e is contained in S.

$\}$	$\in\}$	no
$\}$	$\in\{\Omega,\{ \}\}$	nes
\diamond	$\in\{\Omega,\{\diamond\}\}$	no
$\{\varnothing\}$	$\notin\{\Omega,\{\diamond\}\}$	yes

(iii) $S_{1} \subseteq S_{2}$ if and only if every element in S_{1} is contained in S_{2}.

$\} \subseteq\}$	yes
$\} \subseteq\{\{\diamond\}\}$	yes
$\{\diamond, \boldsymbol{\mu}\} \subseteq\{\diamond, \diamond,\{\boldsymbol{\phi}\}\}$	no
$\{\diamond, \boldsymbol{\phi}\} \subseteq\{\boldsymbol{\phi}, \bigcirc, \diamond\}$	yes

(iv) $S_{1} \cup S_{2}$ is the set which contains all elements in S_{1} or in S_{2}.

$$
\begin{aligned}
& \} \cup\}=\underline{\{ \}} \\
& \} \cup\{\rho\}=\underline{\{\rho\}} \\
& \{\diamond, \odot\} \cup\{\odot, \boldsymbol{\mu}\}=\{\diamond, \odot, \boldsymbol{\mu}\}
\end{aligned}
$$

(v) $S_{1} \cap S_{2}$ is the set which contains all elements both in S_{1} and in S_{2}.

$$
\begin{aligned}
\} \cap\} & =\underline{\{ \}} \\
\} \cap\{\Omega\} & =\underline{\{ \}} \\
\{\diamond, \varnothing\} \cap\{\varnothing, \boldsymbol{\varphi}\} & =\underline{\{\Omega\}}
\end{aligned}
$$

(vi) $S_{1} \backslash S_{2}$ is the set which contains all elements in S_{1} but not in S_{2}.

$$
\begin{aligned}
\{\boldsymbol{\omega}\} \backslash\} & =\underline{\{\boldsymbol{\omega}\}} \\
\} \backslash\{D\} & =\underline{\{ \}} \\
\{\diamond, \odot\} \backslash\{O, \boldsymbol{\omega}\} & =\underline{\{\diamond\}}
\end{aligned}
$$

Exercise 2: Natural numbers as a language

Consider the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$.
Give a definition for a language L over Σ containing exactly all natural numbers (\mathbb{N}) without leading zeros. This means we do not want to have 1 and 001 (but only 1).
Hint: You can define the language directly or you can apply set operations.
Ask yourself: are we interested in how many leading zeros a word has?
Do not forget 0 (zero).

Sketch of solution

$$
\begin{aligned}
L & =\left(\left(\Sigma^{*} \backslash\left\{w \mid w \in \Sigma^{*} \text { and } w=0 v \text { for some } v \in \Sigma^{*}\right\}\right) \backslash\{\varepsilon\}\right) \cup\{0\} \\
\text { or } L & =\left(\left(\Sigma^{*} \backslash\left\{w \mid w \in \Sigma^{*} \text { and } \exists v \in \Sigma^{*}: w=0 v\right\}\right) \backslash\{\varepsilon\}\right) \cup\{0\} \\
\text { or } L & =\left(\Sigma^{+} \backslash\left\{w \mid w \in \Sigma^{*} \text { and } \exists v \in \Sigma^{*}: w=0 v\right\}\right) \cup\{0\} \\
\text { or } L & =\Sigma^{+} \backslash\left\{w \mid w \in \Sigma^{*} \text { and } \exists v \in \Sigma^{+}: w=0 v\right\} \\
\text { or } L & =\left\{w \mid w \in \Sigma^{+} \text {and } \exists v \in \Sigma^{+}: w \neq 0 v\right\} \\
\text { or } L & =\left\{w \in \Sigma^{+} \mid \exists v \in \Sigma^{+}: w \neq 0 v\right\}
\end{aligned}
$$

Exercise 3: Deterministic finite automata

Consider the following picture:
(1) - (2) - (3)

We start at (1) and want to get to (3). We can move from (1) to (2), from (2) to both (1) and (3), and from (3) to (2).
(a) Your task is to represent the language of all valid moves from (1) to (3) as a DFA.
(i) Let $\Sigma=\{r\}$. For each r we go one step to the right.
(ii) Let $\Sigma=\{\ell\}$. For each ℓ we go one step to the left.
(iii) Let $\Sigma=\{r, \ell\}$.
(b) How many words are accepted in each case?
(c) How can we modify the automaton from (iii) if
(i) we start at (2)?
(ii) we want to get to (2) instead?
(iii) we want to get to (2) or (3)?

Sketch of solution
(a) (i)

(ii)

(iii)
(b) (i) 1 ; (ii) 0 ; (iii) infinitely many
(c) (i) Make q_{2} the initial state.
(ii) Make only q_{2} final.
(iii) Make both q_{2} and q_{3} final.

Exercise sheet 3

Exercise 1: Reverse Operator

Consider $\Sigma=\{a, b, c\}$.
(a) What is the language $L(\mathcal{A})$ and its reverse language $L(\mathcal{A})^{R}$ for the NFA \mathcal{A} below?

Construct an NFA that recognizes the reverse language $L(\mathcal{A})^{R}$.
(b) What is the problem with the construction if we have more than one final state?

Sketch of solution
(a) idea: swap initial and final state, turn around the transitions

(b) We get more than one initial state. This can be easily solved with an ε-NFA.

Exercise 2: Regular Expressions

Construct regular expressions for the following languages over the alphabet $\Sigma=\{a, b\}$.
(a) $L_{1}=\{a, b, a b\}$
(b) $L_{2}=\Sigma^{*}$
(c) $L_{3}=\Sigma^{+}$
(d) $L_{4}=\left\{w \in \Sigma^{*} \mid w\right.$ starts with $\left.a\right\}$

Sketch of solution \qquad
(a) $a+b+a b$
(b) $(a+b)^{*}$
(c) $(a+b) \cdot(a+b)^{*}=(a+b)^{*} \cdot(a+b)$
(d) $a \cdot(a+b)^{*}$

Exercise 3: Pumping Lemma

The proof always works as follows:
(a) Assume the language L is regular. Then the pumping lemma must hold.
(b) Assume some $n \in \mathbb{N}$ from the pumping lemma. You must not make any assumptions on n.
(c) Smartly choose a word $z \in L$ (usually depending on n) with $|z| \geq n$.
(d) Assume some decomposition $z=u v w$ (with the rules given in the pumping lemma).
(e) Smartly choose some $i \in \mathbb{N}$ such that $u v^{i} w \notin L$ (often $i=0$ or $i=2$ suffices).

With this "algorithm" in mind, read the example provided in the lecture script on page 27.
In general, you may need to make a case distinction in step (d). Then for each case you have to find some i in the next step. But in this exercise it is not necessary.

