

Prof. Dr. Andreas Podelski Matthias Heizmann Christian Schilling May 27th-28th, 2014

2. Presence Exercise Sheet for the Lecture Computer Science Theory

WITH PROPOSALS FOR SOLUTIONS

Exercise 1: Automata conversions

(a) Convert the following ε -NFA to an NFA.

- (b) Remove all redundant states (i.e., unreachable states and sink states) from the NFA resulting from (a).
- (c) Convert the NFA resulting from (b) to a DFA.

......Sketch of solution

(a) Applying the conversion algorithm results in:

(b) We remove the redundant sink state q_3 .

(c) The automaton is already deterministic, so we need no powerset construction here. We only have to add a sink state.

Exercise 2: Context-free grammars

Consider the alphabet $T = \{\rangle, \langle, a\}$. Construct context-free grammars which generate

- (a) $L = \{ \langle n a^m \rangle^n \mid m, n \in \mathbb{N}, m > 0 \}$
- (b) $L = \{ \langle n a^m \rangle^n \mid m, n \in \mathbb{N}, m \text{ is odd} \}.$

(a)

$$P = \{ S \to \langle S \rangle \mid A \\ A \to AA \mid a \}$$

(b)

$$P = \{ S \to \langle S \rangle \mid A$$
$$A \to AAA \mid a \}$$