% ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

Prof. Dr. Andreas Podelski
Matthias Heizmann
Christian Schilling

May 20th, 2014

1. Presence Exercise Sheet for the Lecture
Computer Science Theory

Exercise 1: Sets

(a) Two sets are equal if and only if

Write down all elements (without the duplicates) for the twelve sets below.

O/ @

O — ®)

() O
W W

Draw lines between those sets which are equal.

@ ©)

0 {0, 0}
@ {00}
© {{}. 0}
{0

{0} (&)

®
®

@
(6):
@:
(12

®)

{}
{{#*}} (B
(% &} (D
{0, 0} (®
{0, 0}

resulting sets (iv—vi).

(i) |S| for finite set S is defined as

{H=_——

{O, &} =____
{0 =
{H{O, i =____

(ii) e € S if and only if

Ueld N
{} €{O.{}} N
O e{VA{OH N
{9 {90} N

(iii) Sy € Sy if and only if

{1c{ N
{3 < {{oh) N
{0 %} € {0, 0, {d}} N
{O. b} C {#,0, 0} N

(iv) S;U Sy is the set which

guly=__
gu{Ot=___
{0, Qu{Q,&}=___

(v) 51N Sy is the set which

gn{y=___
gn{Qt=___
{0, 0IN{O,&}=___

(vi) Sy \ Sy is the set which

(N =
P\ =
{00V dp=_

Exercise 2: Natural numbers as a language
Consider the alphabet ¥ = {0, 1,2,3,4,5,6,7,8,9}.

Give a definition for a language L over ¥ containing exactly all natural numbers (N)
without leading zeros. This means we do not want to have 1 and 001 (but only 1).

Hint: You can define the language directly or you can apply set operations.
Ask yourself: are we interested in how many leading zeros a word has?
Do not forget 0 (zero).

Exercise 3: Deterministic finite automata
Consider the following picture:

O—0—0

We start at @ and want to get to @ We can move from @ to @, from @ to both

@ and @, and from @ to @

(a) Your task is to represent the language of all valid moves from @ to @ as a DFA.

(i) Let ¥ = {r}. For each r we go one step to the right.
(ii) Let ¥ = {¢}. For each ¢ we go one step to the left.
(iii) Let ¥ = {r, (1.
(b) How many words are accepted in each case?
(¢) How can we modify the automaton from (iii) if
(i) we start at @?

(ii) we want to get to @ instead?

(iii) we want to get to @ or @?

Exercise sheet 3

Exercise 1: Reverse Operator

Consider ¥ = {a, b, c}.

(a) What is the language L(A) and its reverse language L(A)% for the NFA A below?

a /N b c.
O O OR 0

L(A) = L(A)R =

Construct an NFA that recognizes the reverse language L(A)%.

(b) What is the problem with the construction if we have more than one final state?

Exercise 2: Regular Expressions
Construct regular expressions for the following languages over the alphabet ¥ = {a, b}.

Exercise 3: Pumping Lemma
The proof always works as follows:

(a) Assume the language L is regular. Then the pumping lemma must hold.

(b) Assume some n € N from the pumping lemma. You must not make any assumptions
on n.

(c) Smartly choose a word z € L (usually depending on n) with |z| > n.
(d) Assume some decomposition z = uvw (with the rules given in the pumping lemma).

(e) Smartly choose some i € N such that uv'w ¢ L (often i = 0 or i = 2 suffices).

With this “algorithm” in mind, read the example provided in the lecture script on page 27.

In general, you may need to make a case distinction in step (d). Then for each case you
have to find some 7 in the next step. But in this exercise it is not necessary.

