
–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

Real-Time Systems

Lecture 01: Introduction

2014-04-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
p
re
li
m

–

2/38

Last Lecture:

• ./.

This Lecture:

• Educational Objectives:

• Be able to decide whether you want to stay with us or not.
(IOW: an advertisement for the lecture.)

• Agree on formalia.

• Content:

• Overview: content (and non-content) of the lecture.

• Definition reactive, real-time, hybrid system.

• Outlook on methodology for precise development of (provably) correct real-time
systems.

• Formalia: dates/times, exercises, exam admission.

• Literature

• A formal model of real-time behaviour.



Introduction

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

3/38

Subject of the Lecture

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
a
ir
b
a
g
–

4/38



What is a Real-Time System?

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
a
ir
b
a
g
–

5/38

Classical example: Airbag Controller

Controllercrash fire

Requirement: “When a crash is detected, fire the airbag.”

• When firing too early: airbag ineffective.

• When firing too late: additional threat.

Say, 300ms (plus/minus small ε) after a crash is the rightTM time to fire.

Then the precise requirement is

“When a crash is detected at time t, fire the airbag at t+ 300ms± ε.”

What is a Real-Time System?

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
g
a
sb
u
rn
er

–

6/38

• Other example: Gas Burner

gas valve

flame sensor

ignition

• Leakage is practically unavoidable:

• for ignition, first open valve

• then ignite the available gas

• ignition may fail. . .

• Leakage is safety critical:
Igniting large amounts of leaked gas may lead to a dangerous explosion.



No, Really, What is a Real-Time System?

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

7/38

• The examples have in common that

it matters, when in time

the output for a given input (sequence) takes place.

For instance,

• “fire” 300ms after “crash”,

• within any interval of at least 60s, leakage (= have the gas valve open without
a flame) amounts to at most 5% of the time.

Note: quantitative (here) vs. qualitative notions of time (untimed).

• Often: There is a physical environment, which has a notion of time, and
which evolves while our controller is computing.

• (Half-)Contrast: vending machine for soft-drinks:

• If the customer is really thirsty, she’ll wait.

• Neither using a really fast or a really slow contemporary
controller causes a violation of (timing) requirements.

• (Real) Contrast: transformational systems, such as computing π.

Other Definitions [Douglass, 1999]

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

8/38

• “A real-time system is one that has performance deadlines on its
computations and actions.”

• Distinguish:

• “Hard deadlines: performance requirements that absolutely must be met each
and every event or time mark.”
“(Late data can be bad data.)”

• “Soft deadlines: for instance about average response times.”
“(Late data is still good.)”

• Design Goal:
A timely system, i.e. one meeting its performance requirements.

• Note: performance can in general be any unit of quantities:

• (discrete) number of steps or processor instructions,

• (discrete or continuous) number of seconds,

• etc.



Definitions: Reactive vs. Real-Time vs. Hybrid Systems

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

9/38

• Reactive Systems interact with their environment
by reacting to inputs from the environment with certain outputs.

• A Real-Time System is a reactive system which, for certain inputs,
has to compute the corresponding outputs within given time bounds.

• A Hybrid System is a real-time system consisting of continuous and
discrete components. The continuous components are time-dependent (!)
physical variables ranging over a continous value set.

• A system is called Safety Critical
if and only if a malfunction can cause loss of goods, money, or even life.

Reactive Systems

Real-Time Systems

Hybrid Systems

The Problem: Constructing Safety-critical RT Systems

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

10/38

• Reactive systems can be partioned into:

plant

sensors

actuators

controller

• “In constructing a real-time system the aim is to control a physically
existing environment, the plant, in such a way that the controlled plant
satisfies all desired (timing) requirements.”

• The design of safety critical (reactive) systems requires a high degree of
precision:
We want — at best — to be sure that a design meets its requirements.

• Real-time systems are often safety-critical.

• The lecture presents approaches for the precise development of real-time
systems based on formal, mathematical methods.



Constructing Safety-critical RT Systems: Examples

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

11/38

Controller
crash fire

“When a crash is detected at time t, fire the airbag at t+ 300ms± ε.”

• A controller program is easy:

while (true) do

poll sensors();

if (crash) tmr.start(300ms);

if (tmr.elapsed()) fire := 1;

update actuators();

od

• And likely to be believed to be correct.

Constructing Safety-critical RT Systems: Examples

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

12/38

• More complicated: additional features.

Controller
crash fire

off

• More complicated: distributed implementation.

Sens Controller Act
m/s



Constructing Safety-critical RT Systems: Examples

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

13/38

gas valve

flame sensor

ignition

• Leakage is safety critical:
Igniting large amounts of leaked gas may lead to a dangerous explosion.

• Controller program for ignition is easy:

while (!flame) do

open valve();

wait(t);

ignite();

od

• Is it correct? (Here: Is it avoiding dangerous explosions?)

Prerequisites for Precise Development of

Real-Time Systems

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
rt
d
ef

–

14/38

plant

sensors

actuators

controller

To

design a controller that (provably) meets its requirements

we need

• a formal model of behaviour in (quantitative) time,

• a language to concisely, conveniently specifiy requirements on behaviour,

• a language to specify behaviour of controllers,

• a notion of “meet” and a methodology to verify (or prove) “meeting”.

Then we can devise a methodology to get from requirements to a
(correct) implementation — here: following [Olderog and Dierks, 2008].



Sketch of the Methodology: Gas Burner Example

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
in
tr
o
–

15/38

• Requirements

• At most 5% of any at least 60s long interval amounts to leakage.

• Reflective Design

• Time intervals with leakage last at most 1s.

• After each leak, wait 30s before opening valve again.

• Constructive Design

• PLC Automaton:
(open valve for 0.5s;
ignite;

if no flame after 0.1s close valve)

• Implementation

• IEC 61131-3 program

gas valve

flame sensor

ignition

Content Overview

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

16/38



Content

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
co

n
te
n
t
–

17/38

Introduction

• First-order Logic

• Duration Calculus (DC)

• Semantical Correctness
Proofs with DC

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• Extended Timed Automata

• Undecidability Results

obs : Time → D(obs) 〈obs0, ν0〉, t0
λ0−→ 〈obs1, ν1〉, t1 . . .

• Automatic Verification...

• ...whether TA satisfies DC formula, observer-based

Tying It All Together

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
co

n
te
n
t
–

18/38

abstraction
level

formal
description
language I

semantic
integration

automatic
verification

formal descr.
language II

Require-
ments

Duration
Calculus

Constraint
Diagrams

DC timed
automata

Live Seq.
Charts

satisfied by ⇒ ‖

Designs PLC-Automata DC
timed

automata

Programs C code
PLC code

logical

semantics

logical

semantics

compiler

(

equiv.

equiv.

equiv.

operational semantics

operational semantics



Maybe-Content

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
co

n
te
n
t
–

19/38

• Worst Case Execution Time

• Recall over-simplified airbag controller:

while (true) do

poll sensors();

if (crash) tmr.start(300ms);

if (tmr.elapsed()) fire := 1;

update actuators();

od

• The execution of poll sensors() and update actuators()
also takes time! (And we have to consider it!)

• Maybe in lecture:
How to determine the WCET of, for instance, C code.
(A science of its own.)

Non-Content

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
co

n
te
n
t
–

20/38

Scheduling

• Recall over-simplified airbag controller:

Sens Controller Act
m/s

• Not in lecture: Specialised methods to determine...

• ...whether the bus provides sufficient bandwidth.

• ...whether the Real-Time OS controlling CPU ‘Controller’ schedules the
airbag control code in time.

• ...how to distribute tasks over multiple CPUs.

• etc.

(Also a science of its own.)



Formalia

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

21/38

Formalia: Event

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

22/38

• Lecturer: Dr. Bernd Westphal

• Support: ...

• Homepage:

http://swt.informatik.uni-freiburg.de/teaching/SS2014/rtsys



Formalia: Dates/Times, Break

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

23/38

• Schedule:

Thursday, week N : 10–12 lecture (exercises M online)

Tuesday, week N + 1: 10–12 lecture
Thursday, week N + 1: 10–12 lecture

Monday, week N + 2: 14:00 (exercises M early turn-in)
Tuesday, week N + 2: 10–12 tutorial (exercises M late turn-in)
Thursday, week N + 2: 10–12 lecture (exercises M + 1 online)

With a prefix of lectures, with public holidays; see homepage for details.

• Location:

• Tuesday, Thursday: here

• Break:

• Unless a majority objects now,
we’ll have a 10 min. break in the middle of each event from now on.

Formalia: Lectures

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

24/38

• Course language: English
(slides/writing, presentation, questions/discussions)

• Presentation:
half slides/half on-screen hand-writing — for reasons

• Script/Media:

• slides without annotations on homepage,
trying to put them there before the lecture

• slides with annotations on homepage, 2-up for printing,
typically soon after the lecture

• open: recording on eLectures portal with max. 1 week delay
(link on homepage – eLectures is updated first, look there!)

• Interaction:
absence often moaned but it takes two,
so please ask/comment immediately



Formalia: Exercises and Tutorials

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

25/38

• Schedule/Submission:

• Recall: exercises online on Thursday before (or soon after) lecture,
regular turn in on corresponding tutorial day until 10:00 local time

• should work in groups of max. 3, clearly give names on submission

• please submit electronically by Mail to me (cf. homepage),
some LATEX styles on homepage; paper submissions are tolerated

• Didactical aim:

• deal more extensively with notions from lecture (easy)

• explore corner cases or alternatives (medium)

• evaluate/appreciate approaches (difficult)

• additional difficulty: imprecise/unclear tasks — by intention

• True aim: most complicated rating system ever, namely two ratings

• Good-will (“reasonable solution with knowledge before tutorial”)

• Evil/Exam (“reasonable solution with knowledge after tutorial”)

10% bonus for early submission.

Formalia: Exam

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

26/38

• Exam Admission:

50% of the maximum possible non-bonus good-will points in total
are sufficient for admission to exam

• Exam Form: (oral or written) not yet decided



Formalia: Evaluation

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

27/38

Speaking of grading and examination...

• Mid-term Evaluation:
We will have a mid-term evaluation1, but we’re always interested in
comments/hints/proposals concerning form or content.

1
that is, students are asked to evaluate lecture, lecturer, and tutor...

Formalia: Questions

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

28/38

• Questions:

• “online”:

(i) ask immediately or in the break

• “offline”:

(i) try to solve yourself

(ii) discuss with colleagues

(iii)

• Exercises: contact tutor by mail (cf. homepage)

• Rest: contact lecturer by mail (cf. homepage)
or just drop by: Building 52, Room 00-020



Formalia: Questions?

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
fo
rm

a
li
a
–

29/38

Real-Time Behaviour, More Formally...

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

30/38



State Variables (or Observables)

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

31/38

• We assume that the real-time systems we consider is characterised by a
finite set of state variables (or observables)

obs1, . . . , obsn

each equipped with a domain D(obs i), 1 ≤ i ≤ n.

• Example: gas burner
gas valve

flame sensor

ignition

• G : {0, 1} — 0 iff valve closed

• F : {0, 1} — 0 iff no flame

• I : {0, 1} — 0 iff ignition off

• H : {0, 1} — 0 iff no heating request

System Evolution over Time

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

32/38

• One possible evolution (or behaviour) of the considered system over time
is represented as a function

π : Time → D(obs1)× · · · × D(obsn).

• If (and only if) observable obs i has value di ∈ D(obs i) at time t ∈ Time,
1 ≤ i ≤ n, we set

π(t) = (d1, . . . , dn).

• For convenience, we use

obs i : Time → D(obs i)

to denote the projection of π onto the i-th component.



What’s the time?

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

33/38

• There are two main choices for the time domain Time:

• discrete time: Time = N0, the set of natural numbers.

• continuous
or dense time: Time = R

+

0
, the set of non-negative real numbers.

• Throughout the lecture we shall use the continuous time model and
consider discrete time as a special case.

Because

• plant models usually live in continuous time,

• we avoid too early introduction introduction of hardware considerations,

• Interesting view: continous-time is a well-suited abstraction from the
discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

34/38

One possible evolution of considered system over
time is represented as function

π : Time → D(obs1)× · · · × D(obsn)

with
π(t) = (d1, . . . , dn)

if (and only if) observable obs i has value di ∈
D(obsi) at time t ∈ Time.

For convenience: use obsi : Time → D(obsi).

gas valve

flame sensor

ignition

π :

Time

1
H

0

1
G

0

1
I
0

1
F

0



Example: Gas Burner

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

35/38

gas valve

flame sensor

ignition

Time

1
H

0

1
G

0

1
I
0

1
F

0

Time

1
H

0

1
G

0

1
I
0

1
F

0

Levels of Detail

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

36/38

Note:
Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

• if the gas valve has different positions, use

G : Time → {0, 1, 2, 3}

(D(G) is never continuous in the lecture, otherwise it’s a hybrid system!)



Levels of Detail

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

36/38

Note:
Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

• if the gas valve has different positions, use

G : Time → {0, 1, 2, 3}

(D(G) is never continuous in the lecture, otherwise it’s a hybrid system!)

• if the thermostat and the controller are connected via a bus and exchange
messages, use

B : Time → Msg∗

to model the receive buffer as a finite sequence of messages from Msg .

Levels of Detail

–
0
1
–
2
0
1
4
-0
4
-2
9
–
S
m
o
d
el

–

36/38

Note:
Depending on the choice of observables we can describe a real-time system
at various levels of detail.

For instance,

• if the gas valve has different positions, use

G : Time → {0, 1, 2, 3}

(D(G) is never continuous in the lecture, otherwise it’s a hybrid system!)

• if the thermostat and the controller are connected via a bus and exchange
messages, use

B : Time → Msg∗

to model the receive buffer as a finite sequence of messages from Msg .

• etc.



References

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

37/38

–
0
1
–
2
0
1
4
-0
4
-2
9
–
m
a
in

–

38/38

[Douglass, 1999] Douglass, B. P. (1999). Doing Hard Time. Addison-Wesley.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time

Systems - Formal Specification and Automatic Verification. Cambridge
University Press.


