Real-Time Systems Lecture 02: Timed Behaviour

2014-05-06

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• Motivation, Overview

This Lecture:

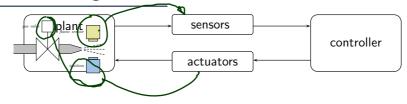
• Educational Objectives:

- Get acquainted with one (simple but powerful) formal model of timed behaviour.
- See how first order predicate-logic can be used to state requirements.

• Content:

- Time-dependent State Variables
- Requirements and System Properities in first order predicate logic
- Classes of Timed Properties

Recall: Prerequisites



То

we need

a formal model of behavious in quantitative time
α language to concisely and conveniently specify requirements
a language to describe conclude behaviour
a hotion of "meet" - and a method to vesify meeting

Real-Time Behaviour, More Formally ...

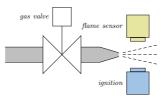
State Variables (or Observables)

• We assume that the real-time systems we consider is characterised by a finite set of **state variables** (or **observables**)

 obs_1,\ldots,obs_n

each equipped with a **domain** $\mathcal{D}(obs_i)$, $1 \leq i \leq n$.

• Example: gas burner



- G: {0,1} 0 iff valve closed
 F: {0,1} 0 iff no flame

02 - 2014-05-06 - Smodel

- $I: \{0,1\} \longrightarrow 0$ iff ignition off
- $H: \{0,1\}$ 0 iff no heating request

5/30

System Evolution over Time

• One possible evolution (or behaviour) of the considered system over time is represented as a function

 π : Time $\rightarrow \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n)$.

• If (and only if) observable obs_i has value $d_i \in \mathcal{D}(obs_i)$ at time $t \in \mathsf{Time}$, $1 \leq i \leq n$, we set

$$\pi(t) = (d_1, \ldots, d_n).$$

• For convenience, we use

$$obs_i$$
: Time $\rightarrow \mathcal{D}(obs_i)$

to denote the projection of π onto the *i*-th component.

What's the time?

- There are two main choices for the time domain Time:
 - discrete time: Time $= \mathbb{N}_0$, the set of natural numbers.
 - continuous or dense time: Time = \mathbb{R}_0^+ , the set of non-negative real numbers.
- Throughout the lecture we shall use the **continuous** time model and consider **discrete** time as a special case.

Because

- 02 - 2014-05-06 - Smodel

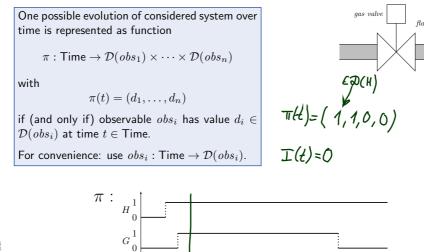
- plant models usually live in continuous time,
- we avoid too early introduction introduction of hardware considerations,
- Interesting view: continous-time is a well-suited **abstraction** from the discrete-time realms induced by clock-cycles etc.

7/30

Example: Gas Burner

 $\begin{bmatrix} 1 \\ 0 \\ F \\ 0 \end{bmatrix}$

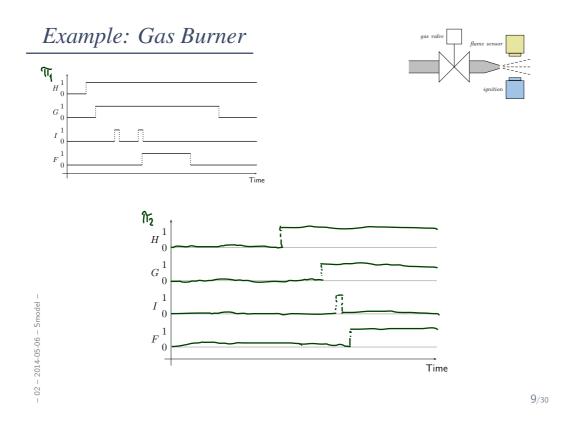
t



- 02 - 2014-05-06 - Smodel

8/30

Time



Levels of Detail

Note:

Depending on the **choice of observables** we can describe a real-time system at various **levels of detail**.

For instance,

• if the gas valve has different positions, use

$$G: \mathsf{Time} \to \{0, 1, 2, 3\}$$

 $(\mathcal{D}(G)$ is never continuous in the lecture, otherwise it's a hybrid system!)

• if the thermostat and the controller are connected via a bus and exchange messages, use

$$B:\mathsf{Time} o Msg^*$$

to model the receive buffer as a finite sequence of messages from Msg.

• etc.

- 02 - 2014-05-06 - Smodel -

System Properties: A First Approach

11/30

Predicate Logic

$$\varphi ::= obs(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \implies \varphi_2 \mid \varphi_1 \iff \varphi_2$$
$$\mid \forall t \in \mathsf{Time} \bullet \varphi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi$$

obs an observable, $d \in \mathcal{D}(obs)$, $t \in Var$ logical variable, $c_1, c_2 \in \mathbb{R}^+_0$ constants.

We assume the standard semantics interpreted over system evolutions

$$obs_i$$
: Time $\rightarrow \mathcal{D}(obs), 1 \leq i \leq n$.

That is, given a particular system evolution π and a formula φ , we can tell whether π satisfies φ under a given valuation β , denoted by $\pi, \beta \models \varphi$.

Evolution of system over time: π : Time $\rightarrow \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n)$. Iff obs_i has value $d_i \in \mathcal{D}(obs_i)$ at $t \in \text{Time, set:}$ $\pi(t) = (d_1, \ldots, d_n).$ $obs_i : \mathsf{Time} \to \mathcal{D}(obs_i).$ For convenience: use

$$\begin{split} \varphi ::= obs(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \implies \varphi_2 \mid \varphi_1 \iff \varphi_2 \\ \mid \forall t \in \mathsf{Time} \bullet \varphi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi \end{split}$$

- Let β : Var \rightarrow Time be a **valuation** of the logical variables.
- $\pi, \beta \models obs_i(t) = d$ iff $obs_i(\beta(t)) = d$
- $\pi, \beta \models \neg \varphi$ iff not $\pi, \beta \models \varphi$
- $\pi, \beta \models \varphi_1 \lor \varphi_2$ iff ...
- ...

•
$$\pi, \beta \models \forall t \in \mathsf{Time} \bullet \varphi \text{ iff for all } t_0 \in \mathsf{Time}, \pi, \beta[t \mapsto t_0] \models \varphi$$

02 - 2014-05-06 - Sprop -• $\pi, \beta \models \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \varphi$ iff

 $\begin{array}{c} \hline Predicate \ Logic \\ \hline \\ Note: \ we \ can \ view \ a \ closed \ predicate \ logic \ formula \ \varphi \ as \ a \ concise \end{array}$

description of

 $\{\pi: \mathsf{Time} \to \mathcal{D}(obs_1) \times \cdots \times \mathcal{D}(obs_n) \mid \pi, \emptyset \models \varphi\},\$

the set of all system evolutions satisfying φ .

For example,

$$\forall t \in \mathsf{Time} \bullet \neg (I(t) \land \neg G(t))$$

describes all evolutions where there is no ignition with closed gas valve.

Requirements and System Properties

• So we can use first-order predicate logic to formally specify requirements.

A **requirement** 'Req' is a set of system behaviours with the pragmatics that, whatever the behaviours of the final **implementation** are, they shall lie within this set.

For instance,

Req :
$$\iff \forall t \in \mathsf{Time} \bullet \neg (I(t) \land \neg G(t))$$

says: "an implementation is fine as long as it doesn't ignite without gas in any of its evolutions".

• We can also use first-order predicate logic to formally describe properties of the **implementation** or **design decisions**.

For instance,

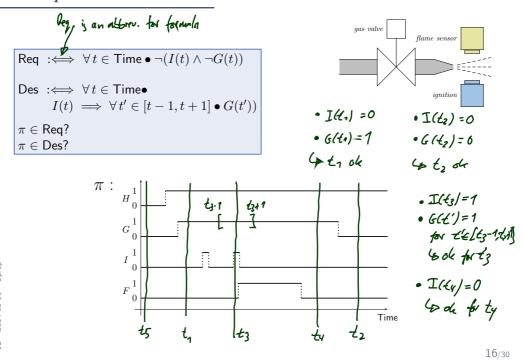
- 02 - 2014-05-06 - Sprop

$$\mathsf{Des} :\iff \forall t \in \mathsf{Time} \bullet I(t) \implies \forall t' \in [t-1,t+1] \bullet G(t'))$$

says that our controller opens the gas valve at least 1 time unit before ignition and keeps it open.

15/30

Example: Gas Burner



- 02 - 2014-05-06 - Sprop

Correctness

- Let 'Req' be a **requirement**,
- 'Des' be a **design**, and
- 'Impl' be an implementation.

Recall: each is a set of evolutions, i.e. a subset of $(\text{Time} \to \times_{i=1}^{n} \mathcal{D}(obs_i))$, described in any form.

We say

02 - 2014-05-06 - Sprop

• 'Des' is a correct design (wrt. 'Req') if and only if

 $\mathsf{Des} \subseteq \mathsf{Req}.$

• 'Impl' is a correct implementation (wrt. 'Des' (or 'Req')) if and only if

 $\mathsf{Impl} \subseteq \mathsf{Des} \quad (\mathsf{or} \; \mathsf{Impl} \subseteq \mathsf{Req})$

If 'Req' and 'Des' are described by formulae of first-oder predicate logic,

proving the design correct amounts to proving that 'Des \implies Req' is valid.

17/30

Classes of Timed Properties

Safety Properties

• A safety property states that

```
something bad must never happen [Lamport].
```

- Example: train inside level crossing with gates open.
- More general, assume observable C: [1] where C(t) = 1 represents a critical system state at time t.

Then

- 02 - 2014-05-06 - Sclasses

$$\forall t \in \mathsf{Time} \bullet \neg C(t)$$

is a safety property.

- In general, a safety property is characterised as a property that can be falsified in bounded time.
- But safety is not everything...

19/30

Liveness Properties

- The simplest form of a **liveness property** states that something good eventually does happen.
- Example: gates open for road traffic.
- More general, assume observable $G : \square \{0, 1\}$ where G(t) = 1 represents a good system state at time t.

Then

$$\exists t \in \mathsf{Time} \bullet G(t)$$

is a liveness property.

- Note: not falsified in finite time.
- With real-time, liveness is too weak...

• A bounded response property states that

the desired reaction on an input occurs in time interval [b, e].

- Example: from request to secure level crossing to gates closed.
- More general, re-consider good thing $G : \square \{0, 1\}$ and request $R : \square \{0, 1\}$.

Then

- 02 - 2014-05-06 - Sclasses

$$\forall t_1 \in \mathsf{Time} \bullet (R(t_1) \implies \exists t_2 \in [t_1 + \overset{\mathsf{b}}{\bowtie}, t_1 + \overset{\mathsf{c}}{\bowtie}] \bullet G(t_2))$$

is a bounded liveness property.

- This property can again be falsified in finite time.
- With gas burners, this is still not everything...

Duration Properties A(b,e):= - elength bigges-equal 60 s (e-6)760 est most 5% of the thank lealing • A duration property states that (← • G(t) ∧ ¬∓(t) for observation interval [b, e] characterised by a condition A(b, e)the accumulated time in which the system is in a certain critical v(be)state has an upper bound u(b, e). := 0.05 ·(e-6) • Example: leakage in gas burner. ie dains -Integral • More general, re-consider critical thing C : $[Dec] \{0, 1\}$ Then $\forall b, e \in \text{Time} \bullet \left(A(b, e) \Longrightarrow \int_{b}^{e} C(t) dt \leq u(b, e) \right) \int_{c}^{e} C(t) de = A_{2} \cdot t_{1}$ is a duration property. • This property can again be falsified in finite time. $d_{0}^{\dagger} = \frac{1}{2} \cdot \frac{1}{2$ - 02 - 2014-05-06 - Sclasses 3e 22/30

Duration Calculus

23/30

Duration Calculus: Preview

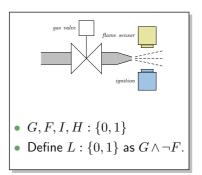
- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

duost Strangest operators:

• everywhere — Example: [G]

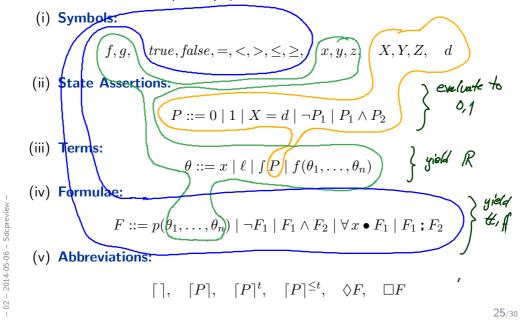
(Holds in a given interval [b, e] iff the gas value is open almost everywhere.)

- **chop** Example: $(\lceil \neg I \rceil; \lceil I \rceil; \lceil \neg I \rceil) \implies \ell \ge 1$ (Ignition phases last at least one time unit.)
- integral Example: $\ell \ge 60 \implies \int L \le \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)



Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":



Symbols: Syntax

- f, g: function symbols, each with arity n ∈ N₀.
 Called constant if n = 0.
 Assume: constants 0, 1, · · · ∈ N₀; binary '+' and '.'.
- *p*, *q*: predicate symbols, also with arity.
 Assume: constants true, false; binary =, <, >, ≤, ≥.
- $x, y, z \in \text{GVar: global variables.}$
- X, Y, Z ∈ Obs: state variables or observables, each of a data type D (or D(X), D(Y), D(Z) to be precise).
 - Called **boolean observable** if data type is $\{0, 1\}$.
- d: elements taken from data types \mathcal{D} of observables.

Symbols: Semantics

- Semantical domains are
 - the truth values $\mathbb{B} = \{ \mathsf{tt}, \mathsf{ff} \}$,
 - the real numbers \mathbb{R} ,
 - time Time, (mostly Time = \mathbb{R}_0^+ (continuous), exception Time = \mathbb{N}_0 (discrete time))
 - and data types \mathcal{D} .
- The semantics of an *n*-ary function symbol *f* is a (mathematical) function from Rⁿ to R, denoted *f̂*, i.e.

$$\hat{f}: \mathbb{R}^n \to \mathbb{R}.$$

• The semantics of an *n*-ary **predicate symbol** *p* is a function from \mathbb{R}^n to \mathbb{B} , denoted \hat{p} , i.e.

$$\hat{p}: \mathbb{R}^n \to \mathbb{B}.$$
 27/30

Symbols: Examples

- The **semantics** of the function and predicate symbols **assumed above** is fixed throughout the lecture:
 - $t\hat{rue} = tt$, $fa\hat{lse} = ff$
 - $\hat{0} \in \mathbb{R}$ is the (real) number zero, etc.
 - $\hat{+}: \mathbb{R}^2 \to \mathbb{R}$ is the addition of real numbers, etc.
 - $\hat{=}: \mathbb{R}^2 \to \mathbb{B}$ is the equality relation on real numbers,
 - $\hat{<}:\mathbb{R}^2\to\mathbb{B}$ is the less-than relation on real numbers, etc.

• "Since the semantics is the expected one, we shall often simply use the

symbols $0, 1, +, \cdot, =, <$ when we mean their semantics $\hat{0}, \hat{1}, +, \hat{\cdot}, =, \hat{<}.$ "

- 02 - 2014-05-06 - Sdcsymb -

Symbols: Semantics

• The semantics of a **global variable** is not fixed (throughout the lecture) but given by a **valuation**, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar}\to\mathbb{R}$$

assigning each global variable $x \in GVar$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$.

Global variables are though fixed over time in system evolutions.

29/30

Symbols: Semantics

• The semantics of a **global variable** is not fixed (throughout the lecture) but given by a **valuation**, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar}\to\mathbb{R}$$

assigning each global variable $x \in GVar$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$.

Global variables are though fixed over time in system evolutions.

• The semantics of a **state variable** is **time-dependent**. It is given by an interpretation \mathcal{I} , i.e. a mapping

$$\mathcal{I}: \mathsf{Obs} \to (\mathsf{Time} \to \mathcal{D})$$

assigning each state variable $X \in Obs$ a function

$$\mathcal{I}(X)$$
 : Time $\to \mathcal{D}(X)$

such that $\mathcal{I}(X)(t) \in \mathcal{D}(X)$ denotes the value that X has at time $t \in \mathsf{Time}^{29/_{30}}$

Symbols: Representing State Variables

- For convenience, we shall abbreviate $\mathcal{I}(X)$ to $X_{\mathcal{I}}.$
- An **interpretation** (of a state variable) can be displayed in form of a **timing diagram**.

For instance,

