03 - 2014-05-08 - main -

Real-Time Systems

Lecture 03: Duration Calculus I

2014-05-08

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Model of timed behaviour: state variables and their interpretation
- First order predicate-logic for requirements and system properties
- Classes of requirements (safety, liveness, etc.)

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus formulae.

Content:

Duration Calculus:
 Assertions, Terms, Formulae, Abbreviations, Examples

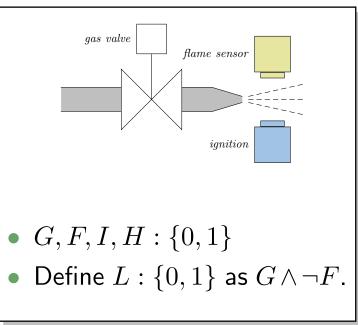
Duration Calculus

Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators:

- everywhere Example: $\lceil G \rceil$ (Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)
- **chop** Example: $(\lceil \neg I \rceil; \lceil I \rceil; \lceil \neg I \rceil) \implies \ell \ge 1$ (Ignition phases last at least one time unit.)
- integral Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)



Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\,xullet F_1\mid F_1$$
 ; F_2

(v) **Abbreviations:**

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Symbols: Syntax

• f, g: function symbols, each with arity $n \in \mathbb{N}_0$.

Called **constant** if n = 0.

Assume: constants $0, 1, \dots \in \mathbb{N}_0$; binary '+' and '\'.

• p, q: **predicate symbols**, also with arity.

Assume: constants true, false; binary $=, <, >, \le, \ge$.

- $x, y, z \in \mathsf{GVar}$: global variables.
- $X, Y, Z \in \text{Obs:}$ state variables or observables, each of a data type \mathcal{D} (or $\mathcal{D}(X), \mathcal{D}(Y), \mathcal{D}(Z)$ to be precise).

Called **boolean observable** if data type is $\{0, 1\}$.

• d: **elements** taken from data types \mathcal{D} of observables.

Symbols: Semantics

- Semantical domains are
 - the truth values $\mathbb{B} = \{\mathsf{tt}, \mathsf{ff}\}$,
 - the real numbers \mathbb{R} ,
 - time Time, $(\mathsf{mostly} \ \mathsf{Time} = \mathbb{R}^+_0 \ (\mathsf{continuous}), \ \mathsf{exception} \ \mathsf{Time} = \mathbb{N}_0 \ (\mathsf{discrete} \ \mathsf{time}))$
 - ullet and data types \mathcal{D} .
- The semantics of an n-ary function symbol f is a (mathematical) function from \mathbb{R}^n to \mathbb{R} , denoted \hat{f} , i.e.

$$\hat{f}: \mathbb{R}^n \to \mathbb{R}.$$

• The semantics of an n-ary **predicate symbol** p is a function from \mathbb{R}^n to \mathbb{B} , denoted \hat{p} , i.e.

$$\hat{p}: \mathbb{R}^n \to \mathbb{B}$$
.

3 - 2014-05-08 - Sdcsymb -

Symbols: Examples

- The semantics of the function and predicate symbols assumed above is fixed throughout the lecture:
 - $t\hat{rue} = tt$, $f\hat{alse} = ff$
 - $\hat{0} \in \mathbb{R}$ is the (real) number zero, etc.
 - \bullet $\hat{+}: \mathbb{R}^2 \to \mathbb{R}$ is the **addition** of real numbers, etc.
 - ullet $\hat{=}: \mathbb{R}^2 o \mathbb{B}$ is the **equality** relation on real numbers,
 - $\hat{\mathbf{c}}: \mathbb{R}^2 \to \mathbb{B}$ is the less-than relation on real numbers, etc.
- "Since the semantics is the expected one, we shall often simply use the symbols $0, 1, +, \cdot, =, <$ when we mean their semantics $\hat{0}, \hat{1}, \hat{+}, \hat{\cdot}, \hat{=}, \hat{<}$."

3 – 2014-05-08 – Sdcsymb

Symbols: Semantics

 The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar} o\mathbb{R}$$

assigning each global variable $x \in \mathsf{GVar}$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$.

Global variables are though fixed over time in system evolutions.

03 - 2014-05-08 - Sdcsymł

Symbols: Semantics

 The semantics of a global variable is not fixed (throughout the lecture) but given by a valuation, i.e. a mapping

$$\mathcal{V}:\mathsf{GVar} o\mathbb{R}$$

assigning each global variable $x \in \mathsf{GVar}$ a real number $\mathcal{V}(x) \in \mathbb{R}$.

We use Val to denote the set of all valuations, i.e. $Val = (GVar \rightarrow \mathbb{R})$.

Global variables are though fixed over time in system evolutions.

• The semantics of a **state variable** is **time-dependent**. It is given by an interpretation \mathcal{I} , i.e. a mapping

$$\mathcal{I}:\mathsf{Obs} \to (\mathsf{Time} \to \mathcal{D})$$

assigning each state variable $X \in \mathsf{Obs}$ a function

$$\mathcal{I}(X):\mathsf{Time} o \mathcal{D}(X)$$

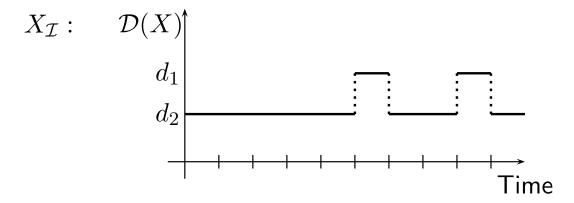
such that $\mathcal{I}(X)(t) \in \mathcal{D}(X)$ denotes the value that X has at time $t \in \mathsf{Time}$.

03 - 2014-05-08 - Sdcsymb -

Symbols: Representing State Variables

- For convenience, we shall abbreviate $\mathcal{I}(X)$ to $X_{\mathcal{I}}$.
- An interpretation (of a state variable) can be displayed in form of a timing diagram.

For instance,



with $\mathcal{D}(X) = \{d_1, d_2\}.$

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\,xullet F_1\mid F_1$$
; F_2

(v) **Abbreviations:**

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

State Assertions: Syntax

The set of state assertions is defined by the following grammar:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

with $d \in \mathcal{D}(X)$.

We shall use P, Q, R to denote state assertions.

Abbreviations:

- We shall write X instead of X = 1 if $\mathcal{D}(X) = \mathbb{B}$.
- Define \vee , \Longrightarrow , \Longleftrightarrow as usual.

Ste

State Assertions: Semantics

• The **semantics** of **state assertion** P is a function

$$\mathcal{I}\llbracket P \rrbracket : \mathsf{Time} \to \{0,1\}$$

i.e. $\mathcal{I}[P](t)$ denotes the truth value of P at time $t \in \mathsf{Time}$.

• The value is defined **inductively** on the structure of P:

$$\mathcal{I}\llbracket 0 \rrbracket(t) = 0,$$
 $\mathcal{I}\llbracket 1 \rrbracket(t) = 1,$
 $\mathcal{I}\llbracket X = d \rrbracket(t) = \begin{cases} 1 & \text{if } X_{\mathcal{I}} = d \\ 0 & \text{otherwise,} \end{cases}$
 $\mathcal{I}\llbracket \neg P_1 \rrbracket(t) = 1 - \mathcal{I}\llbracket P_1 \rrbracket(t)$
 $\mathcal{I}\llbracket P_1 \wedge P_2 \rrbracket(t) = \begin{cases} 1 & \text{if } \mathcal{I}\llbracket P_1 \rrbracket(t) = \mathcal{I}\llbracket P_2 \rrbracket(t) = 1 \\ 0 & \text{otherwise,} \end{cases}$

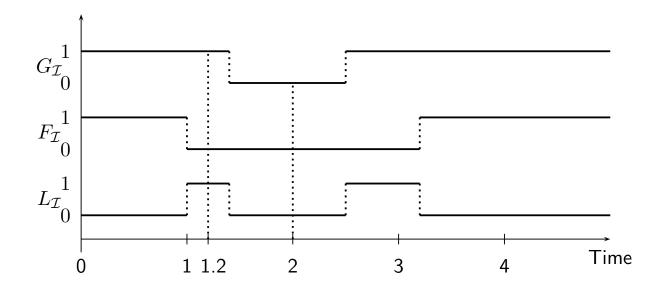
03 - 2014-05-08 - Sdestass -

State Assertions: Notes

- $\mathcal{I}[X](t) = \mathcal{I}[X = 1](t) = \mathcal{I}(X)(t) = X_{\mathcal{I}}(t)$, if X boolean.
- $\mathcal{I}[P]$ is also called **interpretation** of P. We shall write $P_{\mathcal{I}}$ for it.
- Here we prefer 0 and 1 as boolean values (instead of tt and ff) for reasons that will become clear immediately.

State Assertions: Example

- Boolean observables G and F.
- State assertion $L := G \land \neg F$.



• $L_{\mathcal{I}}(1.2) = 1$, because

• $L_{\mathcal{I}}(2) = 0$, because

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\, xullet F_1\mid F_1$$
; F_2

(v) **Abbreviations:**

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Terms: Syntax

 Duration terms (DC terms or just terms) are defined by the following grammar:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

where x is a global variable, ℓ and f are special symbols, P is a state assertion, and f a function symbol (of arity n).

- ℓ is called **length operator**, f is called **integral operator**
- Notation: we may write function symbols in **infix notation** as usual, i.e. write $\theta_1 + \theta_2$ instead of $+(\theta_1, \theta_2)$.

Terms: Syntax

 Duration terms (DC terms or just terms) are defined by the following grammar:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

where x is a global variable, ℓ and f are special symbols, P is a state assertion, and f a function symbol (of arity n).

- ℓ is called **length operator**, f is called **integral operator**
- Notation: we may write function symbols in **infix notation** as usual, i.e. write $\theta_1 + \theta_2$ instead of $+(\theta_1, \theta_2)$.

Definition 1. [Rigid]

A term without length and integral symbols is called rigid.

Terms: Semantics

Closed intervals in the time domain

$$\mathsf{Intv} := \{[b,e] \mid b,e \in \mathsf{Time} \ \mathsf{and} \ b \leq e\}$$

Point intervals: [b, b]

Terms: Semantics

The semantics of a term is a function

$$\mathcal{I}\llbracket heta
rbracket : \mathsf{Val} imes \mathsf{Intv} o \mathbb{R}$$

i.e. $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ is the real number that θ denotes under interpretation \mathcal{I} and valuation \mathcal{V} in the interval [b,e].

• The value is defined **inductively** on the structure of θ :

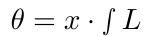
$$\mathcal{I}[\![x]\!](\mathcal{V},[b,e]) = \mathcal{V}(x),$$

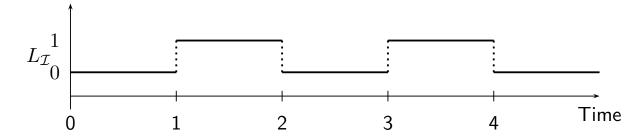
$$\mathcal{I}[\![\ell]\!](\mathcal{V},[b,e]) = e - b,$$

$$\mathcal{I}[\![fP]\!](\mathcal{V},[b,e]) = \int_{b}^{e} P_{\mathcal{I}}(t) dt,$$

$$\mathcal{I}[\![f(\theta_{1},\ldots,\theta_{n})]\!](\mathcal{V},[b,e]) = \hat{f}(\mathcal{I}[\![\theta_{1}]\!](\mathcal{V},[b,e]),\ldots,\mathcal{I}[\![\theta_{n}]\!](\mathcal{V},[b,e])),$$

Terms: Example





$$\mathcal{V}(x) = 20.$$

Terms: Semantics Well-defined?

• So, $\mathcal{I}[\![\int P]\!](\mathcal{V},[b,e])$ is $\int_b^e P_{\mathcal{I}}(t)\ dt$ — but does the integral always exist?

Terms: Semantics Well-defined?

- So, $\mathcal{I}[\![\int P]\!](\mathcal{V},[b,e])$ is $\int_b^e P_{\mathcal{I}}(t)\ dt$ but does the integral always exist?
- IOW: is there a $P_{\mathcal{I}}$ which is not (Riemann-)integrable?

Terms: Semantics Well-defined?

- So, $\mathcal{I}[\![\int P]\!](\mathcal{V},[b,e])$ is $\int_b^e P_{\mathcal{I}}(t)\ dt$ but does the integral always exist?
- IOW: is there a $P_{\mathcal{I}}$ which is not (Riemann-)integrable? Yes. For instance

$$P_{\mathcal{I}}(t) = \begin{cases} 1 & \text{, if } t \in \mathbb{Q} \\ 0 & \text{, if } t \notin \mathbb{Q} \end{cases}$$

03 - 2014-05-08 - Sdcterm -

Terms: Semantics Well-defined?

- So, $\mathcal{I}[\![\int P]\!](\mathcal{V},[b,e])$ is $\int_b^e P_{\mathcal{I}}(t)\ dt$ but does the integral always exist?
- IOW: is there a $P_{\mathcal{I}}$ which is not (Riemann-)integrable? Yes. For instance

$$P_{\mathcal{I}}(t) = \begin{cases} 1 & \text{, if } t \in \mathbb{Q} \\ 0 & \text{, if } t \notin \mathbb{Q} \end{cases}$$

• To exclude such functions, DC considers only interpretations \mathcal{I} satisfying the following condition of **finite variability**:

For each state variable X and each interval [b, e] there is a **finite partition** of [b, e] such that the interpretation $X_{\mathcal{I}}$ is **constant on each part**.

Thus on each interval [b, e] the function $X_{\mathcal{I}}$ has only finitely many points of discontinuity.

Remark 2.5. The semantics $\mathcal{I}[\![\theta]\!]$ of a term is insensitive against changes of the interpretation \mathcal{I} at individual time points.

Remark 2.6. The semantics $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ of a **rigid** term does not depend on the interval [b,e].

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\, xullet F_1\mid F_1$$
; F_2

(v) Abbreviations:

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Formulae: Syntax

• The set of **DC formulae** is defined by the following grammar:

$$F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1$$
; F_2

where p is a predicate symbol, θ_i a term, x a global variable.

- chop operator: ';'
- ullet atomic formula: $p(heta_1,\dots, heta_n)$
- rigid formula: all terms are rigid
- chop free: ';' doesn't occur
- usual notion of free and bound (global) variables

 Note: quantification only over (first-order) global variables, not over (second-order) state variables.

Formulae: Priority Groups

 To avoid parentheses, we define the following five priority groups from highest to lowest priority:

- ;
- \(\), \(\)
- lacksquare \Longrightarrow , \Longleftrightarrow
- ∃, ∀

(negation)

(chop)

(and/or)

(implication/equivalence)

(quantifiers)

Examples:

- $\neg F$; $F \lor H$
- $\forall x \bullet F \land G$

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Examples: $F:=(x\geq y\implies \exists z\bullet z\geq 0 \land x=y+z), \quad \theta_1:=\ell,$ $\theta_2:=\ell+z,$

- $F[x := \theta_1] = (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z)$
- $F[x := \theta_2] = (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z)$

03 - 2014-05-08 - Sdcform

Formulae: Semantics

The semantics of a formula is a function

$$\mathcal{I}[\![F]\!]:\mathsf{Val}\times\mathsf{Intv}\to\{\mathsf{tt},\mathsf{ff}\}$$

i.e. $\mathcal{I}[\![F]\!](\mathcal{V},[b,e])$ is the truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval [b,e].

• This value is defined **inductively** on the structure of *F*:

$$\mathcal{I}\llbracket p(\theta_1,\ldots,\theta_n)\rrbracket(\mathcal{V},[b,e]) = \hat{p}(\mathcal{I}\llbracket\theta_1\rrbracket(\mathcal{V},[b,e]),\ldots,\mathcal{I}\llbracket\theta_n\rrbracket(\mathcal{V},[b,e])),$$

$$\mathcal{I}\llbracket\neg F_1\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt} \; \mathsf{iff} \; \mathcal{I}\llbracket F_1\rrbracket(\mathcal{V},[b,e]) = \mathsf{ff},$$

$$\mathcal{I}\llbracket F_1 \wedge F_2\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt} \; \mathsf{iff} \; \mathcal{I}\llbracket F_1\rrbracket(\mathcal{V},[b,e]) = \mathcal{I}\llbracket F_2\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt},$$

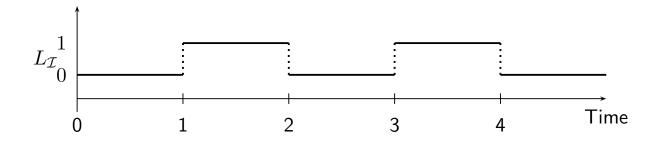
$$\mathcal{I}\llbracket\forall x \bullet F_1\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt} \; \mathsf{iff} \; \mathsf{for} \; \mathsf{all} \; a \in \mathbb{R},$$

$$\mathcal{I}\llbracket F_1[x:=a]\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt}$$

$$\mathcal{I}\llbracket F_1[x:=a]\rrbracket(\mathcal{V},[b,e]) = \mathsf{tt}$$

Formulae: Example

$$F:=\int L=0$$
 ; $\int L=1$



• $\mathcal{I}[F](\mathcal{V}, [0, 2]) =$

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b,e] \in \mathsf{Intv}$.

• If F is rigid, then

$$\forall [b', e'] \in \mathsf{Intv} : \mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b, e]) = \mathcal{I}\llbracket F \rrbracket (\mathcal{V}, [b', e']).$$

• If F is **chop-free** or θ is **rigid**, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

Substitution Lemma

Lemma 2.11. [Substitution]

Consider a formula F, a global variable x, and a term θ such that F is **chop-free** or θ is **rigid**.

Then for all interpretations \mathcal{I} , valuations \mathcal{V} , and intervals [b,e],

$$\mathcal{I}[\![F[x := \theta]]\!](\mathcal{V}, [b, e]) = \mathcal{I}[\![F]\!](\mathcal{V}[x := a], [b, e])$$

where $a = \mathcal{I}[\![\theta]\!](\mathcal{V}, [b, e])$.

• $F:=\ell=x$; $\ell=x\implies \ell=2\cdot x$, $\theta:=\ell$

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) **Symbols:**

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) **Terms:**

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(\theta_1,\ldots,\theta_n)\mid \neg F_1\mid F_1\wedge F_2\mid \forall\, xullet F_1\mid F_1$$
; F_2

(v) Abbreviations:

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.