Real-Time Systems

Lecture 04: Duration Calculus II

2014-05-15

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• Started DC Syntax and Semantics: Symbols, State Assertions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus terms and formulae.
- Content:
 - Duration Calculus Formulae
 - Duration Calculus Abbreviations
 - Satisfiability, Realisability, Validity

- 04 - 2014-05-15 - Sprelim -

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F::=p(heta_1,\ldots, heta_n)\mid
eg F_1\mid F_1\wedge F_2\mid orall \,xullet F_1\mid F_1$$
 ; F_2

(v) Abbreviations:

$$\lceil \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \lozenge F, \quad \Box F$$

- 04 - 2014-05-15 - Sdcterm -

"finitely many points do not marke"

Remark 2.5. The semantics $\mathcal{I}[\![\theta]\!]$ of a term is insensitive against changes of the interpretation ${\cal I}$ at individual time points.

Let I_1, I_2 be interpretations of obs such that $I_1(X)(t) = I_2(X)(t)$ for all $X \in Ols$ and all $t \in Tiane \setminus \{t_0, ..., t_n\}$. Then INDO ((be), D) = I2 [0] ((6,e], D).

Remark 2.6. The semantics $\mathcal{I}[\![\theta]\!](\mathcal{V},[b,e])$ of a **rigid** term does not depend on the interval [b, e].

- 04 - 2014-05-15 - Sdcterm -

5/36

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

$$f, g, true, false, =, <, >, \leq, \geq, x, y, z, X, Y, Z, d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid f \mid P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1$$
; F_2

(v) Abbreviations:

$$[\], \quad [P], \quad [P]^t, \quad [P]^{\leq t}, \quad \Diamond F, \quad \Box F$$

Formulae: Syntax

• The set of **DC formulae** is defined by the following grammar:

$$F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 \not F_2$$

where p is a predicate symbol, θ_i a term, x a global variable.

chop operator: ';'

- 04 - 2014-05-15 - Sdcform

- atomic formula: $p(\theta_1, \dots, \theta_n)$
- rigid formula: all terms are rigid
- chop free: ';' doesn't occur
- usual notion of free and bound (global) variables
- Note: quantification only over (first-order) global variables, not over (second-order) state variables.

7/36

Formulae: Priority Groups

• To avoid parentheses, we define the following five priority groups from highest to lowest priority:

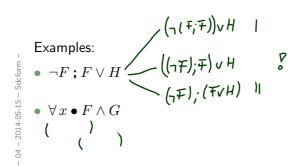
• ¬ (negation)

; (chop)

• ∧, ∨ (and/or)

 \Rightarrow , \iff (implication/equivalence)

 \exists, \forall (quantifiers)



8/36

...of a term θ for a variable x in a formula F.

• We use

$$F[x := \theta]$$

to denote the formula that results from performing the following steps:

- (i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ ,
- (ii) textually replace all free occurrences of x in \tilde{F} by θ .

Examples: $F := (x \ge y \implies \exists z \bullet z \ge 0 \land x = y + z), \quad \theta_1 := \ell, \quad \theta_2 := \underline{\ell + z},$ $\bullet \ F[x := \theta_1] = (\cancel{r} \ge y \implies \exists z \bullet z \ge 0 \land \cancel{x} = y + z)$ $\bullet \ F[x := \theta_2] = (\cancel{x} \ge y \implies \exists \widetilde{z} \bullet \widetilde{z} \ge 0 \land \cancel{x} = y + \widetilde{z})$

9/36

Formulae: Semantics

• The semantics of a formula is a function

$$\mathcal{I}\llbracket F \rrbracket : \mathsf{Val} \times \mathsf{Intv} \to \{\mathsf{tt}, \mathsf{ff}\}$$

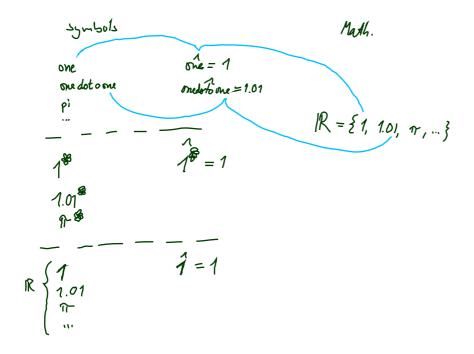
i.e. $\mathcal{I}[\![F]\!](\mathcal{V},[b,e])$ is the truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval [b,e].

valuation $\mathcal V$ in the interval [b,e]. : $\mathbb R^n \to \{k,f\}$ $\in \mathbb R$ • This value is defined inductively on the structure of F:

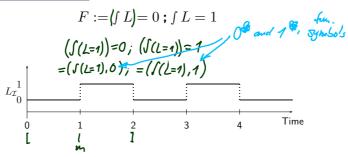
 $\mathcal{I}\llbracket p(\theta_{1},\ldots,\theta_{n})\rrbracket(\mathcal{V},[b,e]) = \beta \Big(\text{IIG.J(V,Cb,eJ)}, \ldots, \text{IIG.J(V,Cb,eJ)} \Big)$ $\mathcal{I}\llbracket \neg F_{1}\rrbracket(\mathcal{V},[b,e]) = \text{tt iff } \text{II.F.J(V,Cb,eJ)} = f$ $\mathcal{I}\llbracket F_{1} \wedge F_{2}\rrbracket(\mathcal{V},[b,e]) = \text{tt iff } \text{II.F.J(V,Cb,eJ)} = \text{II.F.J(V,Cb,eJ)} = f$ $\mathcal{I}\llbracket \forall x \bullet F_{1}\rrbracket(\mathcal{V},[b,e]) = \text{tt iff for all } a \in \mathbb{R} \text{ vseel as symbol.}'$ $\text{II. F.[x:=a] } \rrbracket(\mathcal{V},[b,eJ]) = \text{ft} \text{ denoting verts}$

 $\mathcal{I}\llbracket F_1 ; F_2 \rrbracket (\mathcal{V}, [b,e]) = \text{iff there is an } m \in \mathbb{L} b, eJ \text{ such that}$ $\mathcal{I}\llbracket F_1 ; F_2 \rrbracket (\mathcal{V}, [b,e]) = \text{iff there is an } m \in \mathbb{L} b, eJ \text{ such that}$ $\mathcal{I}\llbracket F_1 ; F_2 \rrbracket (\mathcal{V}, [b,e]) = \text{iff there is an } m \in \mathbb{L} b, eJ \text{ such that}$

- 04 - 2014-05-15 - Sdcform -



Formulae: Example



- $\mathcal{I}[\![F]\!](\mathcal{V},[0,2]) = \mathcal{H}$
 - Proof: Choose M=1 as Chop point.

Choose
$$M=7$$
 is clop pain.
IT $SL=03(V, \{0,1\}) = \stackrel{\triangle}{=} (ICSLJ(V, \{0,1\}), \stackrel{\triangle}{0}) = \stackrel{\triangle}{=} (\int_{0}^{1} L_{I}(t) dt, \stackrel{\triangle}{0}) = \stackrel{\triangle}{=} (0,0) = tt$
IC $SL=1J(V, \{1,2\}) = \stackrel{\triangle}{=} (1,1) = tt$

- The chop point hose is not unique!

 All m∈[0,1] are proper chop points.

 Tor J-1=1; J=1 or [0,1] m=1 is unique

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b,e] \in \mathsf{Intv}$.

• If F is **rigid**, then

$$\forall \, [b',e'] \in \mathsf{Intv} : \mathcal{I}[\![F]\!](\mathcal{V},[b,e]) = \mathcal{I}[\![F]\!](\mathcal{V},[b',e']).$$

• If F is **chop-free** or θ is **rigid**, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

eg.
$$f(x)>3$$
; $f(x)>5$

not e.g. $\ell>0$; $\ell>1$

12/36

Substitution Lemma

gutachic function V: GVar -> R

nodification V[x:=a]:= sa, if

y=x

Lemma 2.11. [Substitution]

Consider a formula F, a global variable x, and a term θ such that F is **chop-free** or θ is **rigid**.

Then for all interpretations \mathcal{I} , valuations \mathcal{V} , and intervals [b, e],

$$\mathcal{I}[\![F[x := \theta]]\!](\mathcal{V}, [b, e]) = \mathcal{I}[\![F]\!](\mathcal{V}[x := a], [b, e])$$

where $a = \mathcal{I}[\![\theta]\!](\mathcal{V}, [b, e])$.

Negative example:

•
$$F := (\ell = x); (\ell = x) \Longrightarrow (\ell = 2 \cdot x), \quad \theta := \ell$$

It $F \sqsubseteq v := 0 \rrbracket (v, U_{h}x) = \bot \llbracket \ell = \ell; \ell = \ell \Rightarrow \ell = 2 \cdot \ell \rrbracket (v, U_{h}x) = f \text{ if } b < e$
I $\sqsubseteq F \rrbracket (v \sqsubseteq x = a \rrbracket, [\iota, \iota]) = \text{ if } (\text{even valid})$

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

$$f,g, \quad true, false, =, <, >, \leq, \geq, \quad x,y,z, \quad X,Y,Z, \quad d$$

(ii) State Assertions:

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) Terms:

$$\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \dots, \theta_n)$$

(iv) Formulae:

$$F ::= p(\theta_1, \dots, \theta_n) \mid \neg F_1 \mid F_1 \wedge F_2 \mid \forall x \bullet F_1 \mid F_1$$
; F_2

(v) Abbreviations:

$$\lceil \rceil, \quad \lceil P \rceil, \quad \lceil P \rceil^t, \quad \lceil P \rceil^{\leq t}, \quad \lozenge F, \quad \Box F$$

14/36

Duration Calculus Abbreviations

- 04 - 2014-05-15 - Sdcform -

Abbreviations

• $\lceil \cdot \rceil := \ell = 0$ (point interval)

• $\lceil P \rceil := \int P = \ell \wedge \ell > 0$ (almost everywhere)

• $\lceil P \rceil^t := \lceil P \rceil \land \ell = t$ (for time t)

• $\lceil P \rceil^{\leq t} := \lceil P \rceil \land \ell \leq t$ (up to time t)

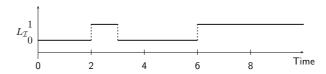
• $\Diamond F := true$; F; true (for some subinterval)

• $\Box F := \neg \Diamond \neg F$ (for all subintervals)

04 - 2014-05-15 - Sdcabbrev -

16/36

Abbreviations: Examples



17/36

Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

$gas\ valve$ flame sensor ignition $G,F,I,H:\{0,1\}$ Define $L:\{0,1\}$ as $G \land \neg F$.

Strangest operators:

- almost everywhere Example: $\lceil G \rceil$ (Holds in a given interval [b,e] iff the gas valve is open almost everywhere.)
- **chop** Example: $(\lceil \neg I \rceil; \lceil I \rceil; \lceil \neg I \rceil) \implies \ell \ge 1$ (Ignition phases last at least one time unit.)
- integral Example: $\ell \geq 60 \implies \int L \leq \frac{\ell}{20}$ (At most 5% leakage time within intervals of at least 60 time units.)

18/36

DC Validity, Satisfiability, Realisability

– 04 – 2014-05-15 – main –

Validity, Satisfiability, Realisability

Let ${\mathcal I}$ be an interpretation, ${\mathcal V}$ a valuation, [b,e] an interval, and F a DC formula.

$$\bullet \ \, \mathcal{I}, \mathcal{V}, [b,e] \models F \text{ ("F holds in \mathcal{I}, \mathcal{V}, $[b,e]$") iff} \qquad \qquad \mathcal{I}[\![F]\!](\mathcal{V}, [b,e]) = \mathsf{tt}.$$

$$\mathcal{I}[F](\mathcal{V}, [b, e]) = \mathsf{tt}.$$

20/36

Validity, Satisfiability, Realisability

Let $\mathcal I$ be an interpretation, $\mathcal V$ a valuation, [b,e] an interval, and F a DC formula.

•
$$\mathcal{I}, \mathcal{V}, [b, e] \models F$$
 ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$

• F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].

Validity, Satisfiability, Realisability

Let ${\mathcal I}$ be an interpretation, ${\mathcal V}$ a valuation, [b,e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[F](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.

- 04 - 2014-05-15 - Sdcsat -

20/36

Validity, Satisfiability, Realisability

Let ${\mathcal I}$ be an interpretation, ${\mathcal V}$ a valuation, [b,e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.

- 04 - 2014-05-15 - Sdcsat -

Validity, Satisfiability, Realisability

Let ${\mathcal I}$ be an interpretation, ${\mathcal V}$ a valuation, [b,e] an interval, and F a DC formula.

- $\bullet \ \, \mathcal{I}, \mathcal{V}, [b,e] \models F \text{ ("F holds in \mathcal{I}, \mathcal{V}, $[b,e]$") iff} \qquad \qquad \mathcal{I}[\![F]\!](\mathcal{V}, [b,e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ (" \mathcal{I} realises F") iff

- 04 - 2014-05-15 - Sdcsat -

 $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models F.$

20/36

Validity, Satisfiability, Realisability

Let ${\mathcal I}$ be an interpretation, ${\mathcal V}$ a valuation, [b,e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$ ("F holds in $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some \mathcal{I} , \mathcal{V} , [b,e].
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F") iff $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$.
- F is called **realisable** iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ (" \mathcal{I} realises F") iff

$$\forall \mathcal{V} \in \mathsf{Val}: \mathcal{I}, \mathcal{V} \models F.$$

• $\models F$ ("F is **valid**") iff

 \forall interpretation $\mathcal{I}: \mathcal{I} \models F$.

- 04 - 2014-05-15 - Sdcsat -

Validity vs. Satisfiability vs. Realisability

Remark 2.13. For all DC formulae F,

- F is satisfiable iff $\neg F$ is not valid, F is valid iff $\neg F$ is not satisfiable.
- ullet If F is valid then F is realisable, but not vice versa.
- \bullet If F is realisable then F is satisfiable, but not vice versa.

- 04 - 2014-05-15 - Sdcsat -

21/36

Examples: Valid? Realisable? Satisfiable?

- $\ell \ge 0$
- $\ell = \int 1$
- $\ell=30 \iff \ell=10$; $\ell=20$
- $((F;G);H) \iff (F;(G;H))$
- $\int L \leq x$
- $\ell=2$

- 04 - 2014-05-15 - Sdcsat -

Initial Values

• $\mathcal{I}, \mathcal{V} \models_0 F$ (" \mathcal{I} and \mathcal{V} realise F from 0") iff

 $\forall t \in \mathsf{Time} : \mathcal{I}, \mathcal{V}, [0, t] \models F.$

- ullet F is called **realisable from** 0 iff some $\mathcal I$ and $\mathcal V$ realise F from 0.
- Intervals of the form [0,t] are called **initial intervals**.
- $\mathcal{I} \models_0 F$ (" \mathcal{I} realises F from 0") iff

 $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models_0 F.$

• $\models_0 F$ ("F is valid from 0") iff \forall interpretation $\mathcal{I}: \mathcal{I} \models_0 F$.

23/36

Initial or not Initial...

For all interpretations \mathcal{I} , valuations \mathcal{V} , and DC formulae F,

- (i) $\mathcal{I}, \mathcal{V} \models F \text{ implies } \mathcal{I}, \mathcal{V} \models_0 F$,
- (ii) if F is realisable then F is realisable from 0, but not vice versa,
- (iii) F is valid iff F is valid from 0.

References

- 04 - 2014-05-15 - main -

35/36

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

- 04 - 2014-05-15 - main -