Real-Time Systems

Lecture 04: Duration Calculus II

2014-05-15

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Started DC Syntax and Semantics: Symbols, State Assertions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Read (and at best also write) Duration Calculus terms and formulae.
- Content:
- Duration Calculus Formulae
- Duration Calculus Abbreviations
- Satisfiability, Realisability, Validity

Duration Calculus Cont'd

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":
(i) Symbols:

$$
f, g, \quad \text { true }, \text { false },=,<,>, \leq, \geq, \quad x, y, z, \quad X, Y, Z, \quad d
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

(v) Abbreviations:

$$
\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.
$$

Terms: Remarks

Remark 2.5. The semantics $\mathcal{I} \llbracket \theta \rrbracket$ of a term is insensitive against changes of the interpretation \mathcal{I} at individual time points.

Remark 2.6. The semantics $\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$ of a rigid term does not depend on the interval $[b, e]$.

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":
(i) Symbols:

$$
f, g, \quad \text { true }, \text { false },=,<,>, \leq, \geq, \quad x, y, z, \quad X, Y, Z, \quad d
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

(v) Abbreviations:

$$
\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.
$$

Formulae: Syntax

- The set of DC formulae is defined by the following grammar:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

where p is a predicate symbol, θ_{i} a term, x a global variable.

- chop operator: ';'
- atomic formula: $p\left(\theta_{1}, \ldots, \theta_{n}\right)$
- rigid formula: all terms are rigid
- chop free: ';' doesn’t occur
- usual notion of free and bound (global) variables
- Note: quantification only over (first-order) global variables, not over (second-order) state variables.

Formulae: Priority Groups

- To avoid parentheses, we define the following five priority groups from highest to lowest priority:
- ᄀ
- ;
- \wedge, \vee
- \Longrightarrow,
- \exists, \forall
(negation)
(chop)
(and/or)
(implication/equivalence)
(quantifiers)

Examples:

- $\neg F ; F \vee H$
- $\forall x \bullet F \wedge G$

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Syntactic Substitution...

...of a term θ for a variable x in a formula F.

- We use

$$
F[x:=\theta]
$$

to denote the formula that results from performing the following steps:
(i) transform F into \tilde{F} by (consistently) renaming bound variables such that no free occurrence of x in \tilde{F} appears within a quantified subformula $\exists z \bullet G$ or $\forall z \bullet G$ for some z occurring in θ,
(ii) textually replace all free occurrences of x in \tilde{F} by θ.

Examples: $F:=(x \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge x=y+z), \quad \theta_{1}:=\ell, \quad \theta_{2}:=\ell+z$,

- $F\left[x:=\theta_{1}\right]=(x \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge x=y+z)$
- $F\left[x:=\theta_{2}\right]=(x \quad \geq y \Longrightarrow \exists z \bullet z \geq 0 \wedge x \quad=y+z)$

Formulae: Semantics

- The semantics of a formula is a function

$$
\mathcal{I} \llbracket F \rrbracket: \text { Val } \times \operatorname{Intv} \rightarrow\{\mathrm{tt}, \mathrm{ff}\}
$$

i.e. $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])$ is the truth value of F under interpretation \mathcal{I} and valuation \mathcal{V} in the interval $[b, e]$.

- This value is defined inductively on the structure of F :

$$
\begin{aligned}
\mathcal{I} \llbracket p\left(\theta_{1}, \ldots, \theta_{n}\right) \rrbracket(\mathcal{V},[b, e]) & = \\
\mathcal{I} \llbracket \neg F_{1} \rrbracket(\mathcal{V},[b, e]) & =\mathrm{tt} \text { iff } \\
\mathcal{I} \llbracket F_{1} \wedge F_{2} \rrbracket(\mathcal{V},[b, e]) & =\mathrm{tt} \text { iff } \\
\mathcal{I} \llbracket \forall x \bullet F_{1} \rrbracket(\mathcal{V},[b, e]) & =\mathrm{tt} \text { iff } \\
\mathcal{I} \llbracket F_{1} ; F_{2} \rrbracket(\mathcal{V},[b, e]) & =\mathrm{iff}
\end{aligned}
$$

Formulae: Example

$$
F:=\int L=0 ; \int L=1
$$

- $\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[0,2])=$

Formulae: Remarks

Remark 2.10. [Rigid and chop-free] Let F be a duration formula, \mathcal{I} an interpretation, \mathcal{V} a valuation, and $[b, e] \in \operatorname{Intv}$.

- If F is rigid, then

$$
\forall\left[b^{\prime}, e^{\prime}\right] \in \operatorname{Intv}: \mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathcal{I} \llbracket F \rrbracket\left(\mathcal{V},\left[b^{\prime}, e^{\prime}\right]\right) .
$$

- If F is chop-free or θ is rigid, then in the calculation of the semantics of F, every occurrence of θ denotes the same value.

Substitution Lemma

Lemma 2.11. [Substitution]

Consider a formula F, a global variable x, and a term θ such that F is chop-free or θ is rigid.
Then for all interpretations \mathcal{I}, valuations \mathcal{V}, and intervals $[b, e]$,

$$
\mathcal{I} \llbracket F[x:=\theta] \rrbracket(\mathcal{V},[b, e\rfloor)=\mathcal{I} \llbracket F \rrbracket(\mathcal{V}[x:=a],[b, e])
$$

where $a=\mathcal{I} \llbracket \theta \rrbracket(\mathcal{V},[b, e])$.

- $F:=\ell=x ; \ell=x \Longrightarrow \ell=2 \cdot x, \quad \theta:=\ell$

Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":
(i) Symbols:

$$
f, g, \quad \text { true }, \text { false },=,<,>, \leq, \geq, \quad x, y, z, \quad X, Y, Z, \quad d
$$

(ii) State Assertions:

$$
P::=0|1| X=d\left|\neg P_{1}\right| P_{1} \wedge P_{2}
$$

(iii) Terms:

$$
\theta::=x|\ell| \int P \mid f\left(\theta_{1}, \ldots, \theta_{n}\right)
$$

(iv) Formulae:

$$
F::=p\left(\theta_{1}, \ldots, \theta_{n}\right)\left|\neg F_{1}\right| F_{1} \wedge F_{2}\left|\forall x \bullet F_{1}\right| F_{1} ; F_{2}
$$

(v) Abbreviations:

$$
\left\rceil, \quad\lceil P\rceil, \quad\lceil P\rceil^{t}, \quad\lceil P\rceil^{\leq t}, \quad \diamond F, \quad \square F\right.
$$

Duration Calculus Abbreviations

Abbreviations

- $\rceil:=\ell=0$
(point interval)
- $\lceil P\rceil:=\int P=\ell \wedge \ell>0$
- $\lceil P\rceil^{t}:=\lceil P\rceil \wedge \ell=t$
- $\lceil P\rceil^{\leq t}:=\lceil P\rceil \wedge \ell \leq t$
(almost everywhere)
(for time t)
(up to time t)
- $\forall F:=$ true $; F$; true
- $\square F:=\neg \diamond \neg F$ (for all subintervals)

Abbreviations: Examples

$\mathcal{I} \llbracket \int L=0$	$\rrbracket(\mathcal{V}$,	$[0,2]$	$)=$
$\mathcal{I} \llbracket \int L=1$	$\rrbracket(\mathcal{V}$,	$[2,6]$	$)=$
$\mathcal{I} \llbracket \int L=0 ; \int L=1$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$
$\mathcal{I} \llbracket\lceil\neg L\rceil$	$\rrbracket(\mathcal{V}$,	$[0,2]$	$)=$
$\mathcal{I} \llbracket\lceil L\rceil$	$\rrbracket(\mathcal{V}$,	$[2,3]$	$)=$
$\mathcal{I} \llbracket\lceil\neg L\rceil ;\lceil L\rceil$	$\rrbracket(\mathcal{V}$,	$[0,3]$	$)=$
$\mathcal{I} \llbracket\lceil\neg L\rceil ;\lceil L\rceil ;\lceil\neg L\rceil$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$
$\mathcal{I} \llbracket \diamond\lceil L\rceil$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$
$\mathcal{I} \llbracket \diamond\lceil\neg L\rceil$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$
$\mathcal{I} \llbracket \diamond\lceil\neg L\rceil^{2}$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$
$\mathcal{I} \llbracket \diamond\lceil\neg L\rceil^{2} ;\lceil\neg L\rceil^{1} ;\lceil\neg L\rceil^{3}$	$\rrbracket(\mathcal{V}$,	$[0,6]$	$)=$

Duration Calculus: Preview

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators:

- almost everywhere - Example: $\lceil G\rceil$

- $G, F, I, H:\{0,1\}$
- Define $L:\{0,1\}$ as $G \wedge \neg F$.
(Holds in a given interval $[b, e]$ iff the gas valve is open almost everywhere.)
- chop - Example: $(\lceil\neg I\rceil ;\lceil I\rceil ;\lceil\neg I\rceil) \Longrightarrow \ell \geq 1$
(Ignition phases last at least one time unit.)
- integral - Example: $\ell \geq 60 \Longrightarrow \int L \leq \frac{\ell}{20}$
(At most 5% leakage time within intervals of at least 60 time units.)

DC Validity, Satisfiability, Realisability

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F($ " F holds in $\mathcal{I}, \mathcal{V},[b, e]$ " $)$ iff

$$
\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} .
$$

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F$ (" F holds in \mathcal{I}, $\mathcal{V},[b, e]$ ") iff
$\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt}$.
- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F$ (" F holds in $\mathcal{I}, \mathcal{V},[b, e]$ ") iff

$$
\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} .
$$

- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.
- $\mathcal{I}, \mathcal{V} \models F$ ("I and \mathcal{V} realise F ") iff

$$
\forall[b, e] \in \operatorname{Intv}: \mathcal{I}, \mathcal{V},[b, e] \models F .
$$

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F$ (" F holds in \mathcal{I}, $\mathcal{V},[b, e]$ ") iff

$$
\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} .
$$

- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.
- $\mathcal{I}, \mathcal{V} \models F($ " \mathcal{I} and \mathcal{V} realise F " $)$ iff $\quad \forall[b, e] \in \operatorname{Intv}: \mathcal{I}, \mathcal{V},[b, e] \models F$.
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F$ (" F holds in $\mathcal{I}, \mathcal{V},[b, e]$ ") iff

$$
\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} .
$$

- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.
- $\mathcal{I}, \mathcal{V} \models F$ (" \mathcal{I} and \mathcal{V} realise F ") iff $\quad \forall[b, e] \in \operatorname{Intv}: \mathcal{I}, \mathcal{V},[b, e] \models F$.
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ ("I realises $F^{\prime \prime}$) iff

$$
\forall \mathcal{V} \in \operatorname{Val}: \mathcal{I}, \mathcal{V} \models F .
$$

Validity, Satisfiability, Realisability

Let \mathcal{I} be an interpretation, \mathcal{V} a valuation, $[b, e]$ an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V},[b, e] \models F(" F$ holds in \mathcal{I}, $\mathcal{V},[b, e]$ ") iff

$$
\mathcal{I} \llbracket F \rrbracket(\mathcal{V},[b, e])=\mathrm{tt} .
$$

- F is called satisfiable iff it holds in some $\mathcal{I}, \mathcal{V},[b, e]$.
- $\mathcal{I}, \mathcal{V} \models F\left(\right.$ " \mathcal{I} and \mathcal{V} realise $\left.F^{\prime \prime}\right)$ iff $\quad \forall[b, e] \in \operatorname{Intv}: \mathcal{I}, \mathcal{V},[b, e] \models F$.
- F is called realisable iff some \mathcal{I} and \mathcal{V} realise F.
- $\mathcal{I} \models F$ ("I realises $F^{\prime \prime}$) iff

$$
\forall \mathcal{V} \in \mathrm{Val}: \mathcal{I}, \mathcal{V} \models F .
$$

- $\models F$ (" F is valid") iff
\forall interpretation $\mathcal{I}: \mathcal{I} \models F$.

Validity vs. Satisfiability vs. Realisability

Remark 2.13. For all DC formulae F,

- F is satisfiable iff $\neg F$ is not valid, F is valid iff $\neg F$ is not satisfiable.
- If F is valid then F is realisable, but not vice versa.
- If F is realisable then F is satisfiable, but not vice versa.

Examples: Valid? Realisable? Satisfiable?

- $\ell \geq 0$
- $\ell=\int 1$
- $\ell=30 \Longleftrightarrow \ell=10 ; \ell=20$
- $((F ; G) ; H) \Longleftrightarrow(F ;(G ; H))$
- $\int L \leq x$
- $\ell=2$

Initial Values

- $\mathcal{I}, \mathcal{V} \models_{0} F$ (" \mathcal{I} and \mathcal{V} realise F from 0 ") iff

$$
\forall t \in \text { Time }: \mathcal{I}, \mathcal{V},[0, t] \models F .
$$

- F is called realisable from 0 iff some \mathcal{I} and \mathcal{V} realise F from 0 .
- Intervals of the form $[0, t]$ are called initial intervals.
- $\mathcal{I} \models_{0} F$ (" \mathcal{I} realises F from 0 ") iff
- $\models_{0} F$ (" F is valid from 0 ") iff

$$
\forall \mathcal{V} \in \operatorname{Val}: \mathcal{I}, \mathcal{V} \models_{0} F .
$$

\forall interpretation $\mathcal{I}: \mathcal{I} \models_{0} F$.

Initial or not Initial...

For all interpretations \mathcal{I}, valuations \mathcal{V}, and DC formulae F,
(i) $\mathcal{I}, \mathcal{V} \models F$ implies $\mathcal{I}, \mathcal{V} \models_{0} F$,
(ii) if F is realisable then F is realisable from 0 , but not vice versa,
(iii) F is valid iff F is valid from 0 .

Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

Methodology: Ideal World...

(i) Choose a collection of observables 'Obs'.
(ii) Provide the requirement/specification 'Spec' as a conjunction of DC formulae (over 'Obs').
(iii) Provide a description 'Ctrl'
of the controller in form of a DC formula (over 'Obs').
(iv) We say 'Ctrl' is correct (wrt. 'Spec') iff

$$
\models_{0} \mathrm{Ctrl} \Longrightarrow \text { Spec. }
$$

Gas Burner Revisited

(i) Choose observables:

- two boolean observables G and F
(i.e. Obs $=\{G, F\}, \mathcal{D}(G)=\mathcal{D}(F)=\{0,1\}$)
- $G=1$: gas valve open
- $F=1$: have flame
- define $L:=G \wedge \neg F$ (leakage)
(ii) Provide the requirement:

$$
\operatorname{Req}: \Longleftrightarrow \square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)
$$

Gas Burner Revisited

(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:

- Des-1: $\Longleftrightarrow \square(\lceil L\rceil \Longrightarrow \ell \leq 1)$
- Des-2: $\Longleftrightarrow \square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)$
(iv) Prove correctness:
- We want (or do we want $\models_{0} \ldots$?):

$$
\begin{equation*}
\models(\text { Des-1 } \wedge \text { Des- } 2 \Longrightarrow \text { Req }) \tag{Thm.2.16}
\end{equation*}
$$

Gas Burner Revisited

(iii) Provide a description 'Ctrl'
of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:

- Des-1 : $\Longleftrightarrow \square(\lceil L\rceil \Longrightarrow \ell \leq 1)$
- Des-2: $\Longleftrightarrow \square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)$
(iv) Prove correctness:
- We want (or do we want $\models_{0} \ldots$?):

$$
\begin{equation*}
\models(\text { Des-1 } \wedge \text { Des- } 2 \Longrightarrow \text { Req }) \tag{Thm.2.16}
\end{equation*}
$$

- We do show

$$
\begin{equation*}
\models \operatorname{Req}-1 \Longrightarrow \text { Req } \tag{Lem.2.17}
\end{equation*}
$$

with the simplified requirement

$$
\text { Req- } 1:=\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)
$$

Gas Burner Revisited: Lemma 2.17

Claim:

$$
\models \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \Longrightarrow \underbrace{\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)}_{\text {Req }}
$$

Proof:

Gas Burner Revisited: Lemma 2.17

Claim:

$$
\models \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \Longrightarrow \underbrace{\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)}_{\text {Req }}
$$

Proof:

- Assume 'Req- 1 '.

Gas Burner Revisited: Lemma 2.17

Claim:

$$
\models \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \Longrightarrow \underbrace{\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)}_{\text {Req }}
$$

Proof:

- Assume 'Req-1'.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and $[b, e]$ an interval with $e-b \geq 60$.

Gas Burner Revisited: Lemma 2.17

Claim:

$$
\models \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }} \Longrightarrow \underbrace{\square\left(\ell \geq 60 \Longrightarrow 20 \cdot \int L \leq \ell\right)}_{\text {Req }}
$$

Proof:

- Assume 'Req-1'.
- Let $L_{\mathcal{I}}$ be any interpretation of L, and $[b, e]$ an interval with $e-b \geq 60$.
- Show " $20 \cdot \int L \leq \ell$ ", i.e.
i.e.

- Set $n:=\left\lceil\frac{e-b}{30}\right\rceil$, i.e. $n \in \mathbb{N}$ with $n-1<\frac{e-b}{30} \leq n$, and split the interval

Some Laws of the DC Integral Operator

Theorem 2.18.

For all state assertions P and all real numbers $r_{1}, r_{2} \in \mathbb{R}$,
(i) $\models \int P \leq \ell$,
(ii) $\models\left(\int P=r_{1}\right)$; $\left(\int P=r_{2}\right) \Longrightarrow \int P=r_{1}+r_{2}$,
(iii) $\models\lceil\neg P\rceil \Longrightarrow \int P=0$,
(iv) $\models\left\rceil \Longrightarrow \int P=0\right.$.

Gas Burner Revisited: Lemma 2.18

Claim:
$\vDash(\underbrace{\square(\lceil L\rceil \Longrightarrow \ell \leq 1)}_{\text {Des-1 }} \wedge \underbrace{\square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)}_{\text {Des-2 }}) \Longrightarrow \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }}$
Proof:

Gas Burner Revisited: Lemma 2.(i) $\vDash \int P \leq h$ (iv) $\vDash \Pi \Rightarrow \int P=$

$$
\begin{gathered}
(\mathrm{ii}) \models\left(\int P=r_{1}\right) ;\left(\int P=r_{2}\right) \\
\Longrightarrow \int P=r_{1}+r_{2} \\
(\text { iii }) \models\lceil\neg P\rceil \Longrightarrow \int P=0
\end{gathered}
$$

Claim:
$\vDash(\underbrace{\square(\lceil L\rceil \Longrightarrow \ell \leq 1)}_{\text {Des-1 }} \wedge \underbrace{\square(\lceil L\rceil ;\lceil\neg L\rceil ;\lceil L\rceil \Longrightarrow \ell>30)}_{\text {Des-2 }}) \Longrightarrow \underbrace{\square\left(\ell \leq 30 \Longrightarrow \int L \leq 1\right)}_{\text {Req-1 }}$
Proof:

Gas Burner Revisited: Lemma 2.18

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

