#### **Real-Time Systems**

# Lecture 05: Duration Calculus III

2014-05-20

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

## Contents & Goals

#### Last Lecture:

• DC Syntax and Semantics: Formulae

#### This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
  - Read (and at best also write) Duration Calculus formulae including abbreviations.
  - What is Validity/Satisfiability/Realisability for DC formulae?
  - How can we prove a design correct?

#### • Content:

- Duration Calculus Abbreviations
- Basic Properties
- Validity, Satisfiability, Realisability
- Correctness Proofs: Gas Burner

#### **Duration Calculus Abbreviations**

### Abbreviations

- $[] := \ell = 0$
- $\lceil P \rceil := \int P = \ell \land \ell > 0$
- $\lceil P \rceil^t := \lceil P \rceil \land \ell = t$
- $\lceil P \rceil^{\leq t} := \lceil P \rceil \land \ell \leq t$
- $\Diamond F := true$  ; F ; true
- $\Box F := \neg \Diamond \neg F$

(point interval)
(almost everywhere)
 (for time t)
 (up to time t)

(for all subintervals)

(for some subinterval)

### Abbreviations: Examples



# Duration Calculus: Looking Back

- Duration Calculus is an interval logic.
- Formulae are evaluated in an (implicitly given) interval.

#### Strangest operators:

• almost everywhere — Example:  $\lceil G \rceil$ 



(Holds in a given interval [b, e] iff the gas value is open almost everywhere.)

- chop Example: ([¬I]; [I]; [¬I]) ⇒ ℓ ≥ 1 (Ignition phases last at least one time unit.)
- integral Example:  $\ell \ge 60 \implies \int L \le \frac{\ell}{20}$

(At most 5% leakage time within intervals of at least 60 time units.)

Let  $\mathcal{I}$  be an interpretation,  $\mathcal{V}$  a valuation, [b, e] an interval, and F a DC formula.

•  $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$ 

Let  $\mathcal{I}$  be an interpretation,  $\mathcal{V}$  a valuation, [b, e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some  $\mathcal{I}$ ,  $\mathcal{V}$ , [b, e].

Let  $\mathcal{I}$  be an interpretation,  $\mathcal{V}$  a valuation, [b, e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some  $\mathcal{I}$ ,  $\mathcal{V}$ , [b, e].
- $\mathcal{I}, \mathcal{V} \models F$  (" $\mathcal{I}$  and  $\mathcal{V}$  realise F") iff  $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$ .

Let  $\mathcal{I}$  be an interpretation,  $\mathcal{V}$  a valuation, [b, e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some  $\mathcal{I}$ ,  $\mathcal{V}$ , [b, e].
- $\mathcal{I}, \mathcal{V} \models F$  (" $\mathcal{I}$  and  $\mathcal{V}$  realise F") iff  $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$ .
- F is called **realisable** iff some  $\mathcal{I}$  and  $\mathcal{V}$  realise F.

Let  $\mathcal{I}$  be an interpretation,  $\mathcal{V}$  a valuation, [b, e] an interval, and F a DC formula.

- $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$
- F is called **satisfiable** iff it holds in some  $\mathcal{I}$ ,  $\mathcal{V}$ , [b, e].
- $\mathcal{I}, \mathcal{V} \models F$  (" $\mathcal{I}$  and  $\mathcal{V}$  realise F") iff  $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$ .
- F is called **realisable** iff some  $\mathcal{I}$  and  $\mathcal{V}$  realise F.

•  $\mathcal{I} \models F$  (" $\mathcal{I}$  realises F") iff  $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models F$ .

Let  $\mathcal I$  be an interpretation,  $\mathcal V$  a valuation, [b,e] an interval, and F a DC formula.

•  $\mathcal{I}, \mathcal{V}, [b, e] \models F$  ("F holds in  $\mathcal{I}, \mathcal{V}, [b, e]$ ") iff  $\mathcal{I}[\![F]\!](\mathcal{V}, [b, e]) = \mathsf{tt}.$ 

• F is called **satisfiable** iff it holds in some  $\mathcal{I}$ ,  $\mathcal{V}$ , [b, e].

- $\mathcal{I}, \mathcal{V} \models F$  (" $\mathcal{I}$  and  $\mathcal{V}$  realise F") iff  $\forall [b, e] \in \mathsf{Intv} : \mathcal{I}, \mathcal{V}, [b, e] \models F$ .
- F is called **realisable** iff some  $\mathcal{I}$  and  $\mathcal{V}$  realise F.

•  $\mathcal{I} \models F$  (" $\mathcal{I}$  realises F") iff  $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models F$ .

•  $\models F$  ("*F* is valid") iff  $\forall$  interpretation  $\mathcal{I} : \mathcal{I} \models F$ .

## Validity vs. Satisfiability vs. Realisability

```
Remark 2.13. For all DC formulae F,
F is satisfiable iff ¬F is not valid,
F is valid iff ¬F is not satisfiable.
If F is valid then F is realisable, but not vice versa.
If F is realisable then F is satisfiable, but not vice versa.
```

## Examples: Valid? Realisable? Satisfiable?

- $\ell \ge 0$
- $\ell = \int 1$
- $\ell = 30 \iff \ell = 10$  ;  $\ell = 20$
- $((F;G);H) \iff (F;(G;H))$
- $\int L \leq x$

Sdcsat -

2014-05-20

05

•  $\mathcal{I}, \mathcal{V} \models_0 F$  (" $\mathcal{I}$  and  $\mathcal{V}$  realise F from 0") iff

 $\forall t \in \mathsf{Time} : \mathcal{I}, \mathcal{V}, [0, t] \models F.$ 

- F is called **realisable from** 0 iff some  $\mathcal{I}$  and  $\mathcal{V}$  realise F from 0.
- Intervals of the form [0, t] are called **initial intervals**.
- $\mathcal{I} \models_0 F$  (" $\mathcal{I}$  realises F from 0") iff  $\forall \mathcal{V} \in \mathsf{Val} : \mathcal{I}, \mathcal{V} \models_0 F$ .
- $\models_0 F$  ("*F* is valid from 0") iff

 $\forall$  interpretation  $\mathcal{I}: \mathcal{I} \models_0 F$ .

## Initial or not Initial...

For all interpretations  $\mathcal{I}$ , valuations  $\mathcal{V}$ , and DC formulae F,

```
(i) \mathcal{I}, \mathcal{V} \models F implies \mathcal{I}, \mathcal{V} \models_0 F,
```

(ii) if F is realisable then F is realisable from 0, but not vice versa,

(iii) F is valid iff F is valid from 0.

#### Specification and Semantics-based Correctness Proofs of Real-Time Systems with DC

## Methodology: Ideal World...

- (i) Choose a collection of **observables** 'Obs'.
- (ii) Provide the **requirement**/**specification** 'Spec' as a conjunction of DC formulae (over 'Obs').
- (iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs').
- (iv) We say 'Ctrl' is **correct** (wrt. 'Spec') iff

 $\models_0 \mathsf{Ctrl} \implies \mathsf{Spec.}$ 

### Gas Burner Revisited



#### (i) Choose **observables**:

- two boolean observables G and F(i.e. Obs = {G, F},  $\mathcal{D}(G) = \mathcal{D}(F) = \{0, 1\}$ )
- G = 1: gas valve open
- F = 1: have flame
- define  $L := G \land \neg F$  (leakage)

(ii) Provide the **requirement**:

$$\mathsf{Req}: \iff \Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)$$

## Gas Burner Revisited

(iii) Provide a description 'Ctrl'
 of the controller in form of a DC formula (over 'Obs').
 Here, firstly consider a design:

• Des-1 : 
$$\iff \Box(\lceil L \rceil \implies \ell \le 1)$$

• Des-2:  $\iff \Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$ 

#### (iv) Prove correctness:

• We want (or do we want 
$$\models_0 \dots ?$$
):

$$\models (\mathsf{Des-1} \land \mathsf{Des-2} \implies \mathsf{Req}) \tag{Thm. 2.16}$$

### Gas Burner Revisited

(iii) Provide a description 'Ctrl' of the controller in form of a DC formula (over 'Obs'). Here, firstly consider a design:

• Des-1 : 
$$\iff \Box(\lceil L \rceil \implies \ell \le 1)$$

• Des-2:  $\iff \Box(\lceil L \rceil; \lceil \neg L \rceil; \lceil L \rceil \implies \ell > 30)$ 

#### (iv) Prove correctness:

• We want (or do we want  $\models_0 ... ?$ ):

$$= (\mathsf{Des-1} \land \mathsf{Des-2} \implies \mathsf{Req}) \tag{Thm. 2.16}$$

• We do show

$$\models \mathsf{Req-1} \implies \mathsf{Req} \qquad (\mathsf{Lem. 2.17})$$

with the simplified requirement

 $\mathsf{Req-1} := \Box(\ell \le 30 \implies \int L \le 1),$ 

Claim:

$$\models \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\mathsf{Req-1}} \implies \underbrace{\Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)}_{\mathsf{Req}}$$

Proof:

Claim:

$$\models \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\mathsf{Req-1}} \implies \underbrace{\Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)}_{\mathsf{Req}}$$

Proof:

• Assume 'Req-1'.

Claim:

$$\models \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\text{Req-1}} \implies \underbrace{\Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)}_{\text{Req}}$$

Proof:

- Assume 'Req-1'.
- Let  $L_{\mathcal{I}}$  be any interpretation of L, and [b, e] an interval with  $e b \ge 60$ .

Claim:

$$\models \underbrace{\Box(\ell \le 30 \implies \int L \le 1)}_{\text{Req-1}} \implies \underbrace{\Box(\ell \ge 60 \implies 20 \cdot \int L \le \ell)}_{\text{Req}}$$

Proof:

- Assume 'Req-1'.
- Let  $L_{\mathcal{I}}$  be any interpretation of L, and [b, e] an interval with  $e b \ge 60$ .
- Show " $20 \cdot \int L \leq \ell$ ", i.e.

 $\mathcal{I}[\![20 \cdot \int L \leq \ell]\!](\mathcal{V}, [b, e]) = \mathsf{tt}$ 

i.e.

$$\hat{20} \cdot \int_{b}^{e} L_{\mathcal{I}}(t) \, dt \stackrel{\circ}{\leq} (e-b)$$

Gas Burner Revisited: Lemma 2.17 
$$\models \bigcirc (\ell \le 30 \implies \int L \le 1) \\ \underset{\text{Req-1}}{\overset{\text{Req-1}}{\Rightarrow}} \bigcirc (\ell \ge 60 \implies 20 \cdot \int L \le \ell)$$

• Set  $n := \lfloor \frac{e-b}{30} \rfloor$ , i.e.  $n \in \mathbb{N}$  with  $n-1 < \frac{e-b}{30} \leq n$ , and split the interval



## Some Laws of the DC Integral Operator

**Theorem 2.18.**  
For all state assertions 
$$P$$
 and all real numbers  $r_1, r_2 \in \mathbb{R}$   
(i)  $\models \int P \leq \ell$ ,  
(ii)  $\models (\int P = r_1)$ ;  $(\int P = r_2) \implies \int P = r_1 + r_2$ ,  
(iii)  $\models [\neg P] \implies \int P = 0$ ,  
(iv)  $\models [\neg \implies \int P = 0$ .

Claim:



Proof:



Des-2

Des-1

Proof:

Req-1

#### Obstacles in Non-Ideal World

## Methodology: The World is Not Ideal...

- (i) Choose a collection of **observables** 'Obs'.
- (ii) Provide **specification** 'Spec' (conjunction of DC formulae (over 'Obs')).
- (iii) Provide a description 'Ctrl' of the controller (DC formula (over 'Obs')).
- (iv) Prove 'Ctrl' is **correct** (wrt. 'Spec').

That looks too simple to be practical. Typical obstacles:

- (i) It may be impossible to realise 'Spec' if it doesn't consider properties of the plant.
- (ii) There are typically intermediate design levels between 'Spec' and 'Ctrl'.
- (iii) 'Spec' and 'Ctrl' may use **different observables**.
- (iv) **Proving** validity of the implication is not trivial.

# (i) Assumptions As A Form of Plant Model

- Often the controller will (or can) operate correctly only under some assumptions.
- For instance, with a level crossing
  - we may assume an upper bound on the speed of approaching trains, (otherwise we'd need to close the gates arbitrarily fast)
  - we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can't make promises to the road traffic)

# (i) Assumptions As A Form of Plant Model

- Often the controller will (or can) operate correctly only under some assumptions.
- For instance, with a level crossing
  - we may assume an upper bound on the speed of approaching trains, (otherwise we'd need to close the gates arbitrarily fast)
  - we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can't make promises to the road traffic)
- We shall specify such assumptions as a DC formula 'Asm' on the input observables and verify correctness of 'Ctrl' wrt. 'Spec' by proving validity (from 0) of

 $\mathsf{Ctrl} \land \mathsf{Asm} \implies \mathsf{Spec}$ 

# (i) Assumptions As A Form of Plant Model

- Often the controller will (or can) operate correctly only under some assumptions.
- For instance, with a level crossing
  - we may assume an upper bound on the speed of approaching trains, (otherwise we'd need to close the gates arbitrarily fast)
  - we may assume that trains are not arbitrarily slow in the crossing, (otherwise we can't make promises to the road traffic)
- We shall specify such assumptions as a DC formula 'Asm' on the input observables and verify correctness of 'Ctrl' wrt. 'Spec' by proving validity (from 0) of

 $\mathsf{Ctrl} \land \mathsf{Asm} \implies \mathsf{Spec}$ 

Shall we care whether 'Asm' is satisfiable?

# (ii) Intermediate Design Levels

- A top-down development approach may involve
  - Spec specification/requirements
  - Des design
  - Ctrl implementation
- Then correctness is established by proving validity of

$$Ctrl \implies Des$$
 (1)

and

$$Des \implies Spec$$
 (2)

(then concluding Ctrl  $\implies$  Spec by transitivity)

Any preference on the order?

# (iii): Different Observables

- Assume, 'Spec' uses more abstract observables Obs<sub>A</sub> and 'Ctrl' more concrete ones Obs<sub>C</sub>.
- For instance:
  - in  $Obs_A$ : only consider gas value open or closed  $(\mathcal{D}(G) = \{0, 1\})$
  - in Obs<sub>C</sub>: may control two valves and care for intermediate positions, for instance, to react to different heating requests
     (D(G) = {0.1.2.3}, D(G) = {0.1.2.3})

# (iii): Different Observables

- Assume, 'Spec' uses more abstract observables Obs<sub>A</sub> and 'Ctrl' more concrete ones Obs<sub>C</sub>.
- For instance:
  - in Obs<sub>A</sub>: only consider gas valve open or closed ( $\mathcal{D}(G) = \{0, 1\}$ )
  - in Obs<sub>C</sub>: may control two valves and care for intermediate positions, for instance, to react to different heating requests (D(G<sub>1</sub>) = {0, 1, 2, 3}, D(G<sub>2</sub>) = {0, 1, 2, 3})
- To prove correctness, we need information how the observables are related

   an invariant which links the data values of Obs<sub>A</sub> and Obs<sub>C</sub>.
- If we're given the linking invariant as a DC formula, say 'Link<sub>C,A</sub>', then proving correctness of 'Ctrl' wrt. 'Spec' amounts to proving validity (from 0) of

 $\mathsf{Ctrl} \wedge \mathsf{Link}_{C,A} \implies \mathsf{Spec.}$ 

• For instance,

## Obstacle (iv): How to Prove Correctness?

- by hand on the basis of DC semantics,
- maybe supported by proof rules,
- sometimes a general theorem may fit (e.g. cycle times of PLC automata),
- algorithms as in Uppaal.

## Recall: Tying It All Together



#### References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.