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Last Lecture:

• DC Syntax and Semantics: Formulae

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Read (and at best also write) Duration Calculus formulae – including
abbreviations.

• What is Validity/Satisfiability/Realisability for DC formulae?

• How can we prove a design correct?

• Content:

• Duration Calculus Abbreviations

• Basic Properties

• Validity, Satisfiability, Realisability

• Correctness Proofs: Gas Burner
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• ⌈⌉ := ℓ = 0 (point interval)

• ⌈P ⌉ := ∫ P = ℓ ∧ ℓ > 0 (almost everywhere)

• ⌈P ⌉t := ⌈P ⌉ ∧ ℓ = t (for time t)

• ⌈P ⌉≤t := ⌈P ⌉ ∧ ℓ ≤ t (up to time t)

• ♦F := true ; F ; true (for some subinterval)

• �F := ¬♦¬F (for all subintervals)
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Time

1

0
LI

0 2 4 6 8

IJ ∫ L = 0 K(V, [0, 2] ) =
IJ ∫ L = 1 K(V, [2, 6] ) =
IJ ∫ L = 0 ; ∫ L = 1 K(V, [0, 6] ) =
IJ ⌈¬L⌉ K(V, [0, 2] ) =
IJ ⌈L⌉ K(V, [2, 3] ) =
IJ ⌈¬L⌉ ; ⌈L⌉ K(V, [0, 3] ) =
IJ ⌈¬L⌉ ; ⌈L⌉ ; ⌈¬L⌉ K(V, [0, 6] ) =
IJ ♦⌈L⌉ K(V, [0, 6] ) =
IJ ♦⌈¬L⌉ K(V, [0, 6] ) =
IJ ♦⌈¬L⌉2 K(V, [0, 6] ) =
IJ ♦⌈¬L⌉2 ; ⌈¬L⌉1 ; ⌈¬L⌉3 K(V, [0, 6] ) =
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• Duration Calculus is an interval logic.

• Formulae are evaluated in an
(implicitly given) interval.

gas valve

flame sensor

ignition

• G,F, I,H : {0, 1}

• Define L : {0, 1} as G∧¬F .Strangest operators:

• almost everywhere — Example: ⌈G⌉

(Holds in a given interval [b, e] iff the gas valve is open almost everywhere.)

• chop — Example: (⌈¬I⌉ ; ⌈I⌉ ; ⌈¬I⌉) =⇒ ℓ ≥ 1

(Ignition phases last at least one time unit.)

• integral — Example: ℓ ≥ 60 =⇒ ∫ L ≤ ℓ
20

(At most 5% leakage time within intervals of at least 60 time units.)
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.

• F is called satisfiable iff it holds in some I, V, [b, e].
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.

• F is called satisfiable iff it holds in some I, V, [b, e].

• I,V |= F (“I and V realise F”) iff ∀ [b, e] ∈ Intv : I,V, [b, e] |= F .
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.

• F is called satisfiable iff it holds in some I, V, [b, e].

• I,V |= F (“I and V realise F”) iff ∀ [b, e] ∈ Intv : I,V, [b, e] |= F .

• F is called realisable iff some I and V realise F .
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.

• F is called satisfiable iff it holds in some I, V, [b, e].

• I,V |= F (“I and V realise F”) iff ∀ [b, e] ∈ Intv : I,V, [b, e] |= F .

• F is called realisable iff some I and V realise F .

• I |= F (“I realises F”) iff ∀V ∈ Val : I,V |= F .
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Let I be an interpretation, V a valuation, [b, e] an interval, and F a DC
formula.

• I,V, [b, e] |= F (“F holds in I, V, [b, e]”) iff IJF K(V, [b, e]) = tt.

• F is called satisfiable iff it holds in some I, V, [b, e].

• I,V |= F (“I and V realise F”) iff ∀ [b, e] ∈ Intv : I,V, [b, e] |= F .

• F is called realisable iff some I and V realise F .

• I |= F (“I realises F”) iff ∀V ∈ Val : I,V |= F .

• |= F (“F is valid”) iff ∀ interpretation I : I |= F .
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Remark 2.13. For all DC formulae F ,

• F is satisfiable iff ¬F is not valid,
F is valid iff ¬F is not satisfiable.

• If F is valid then F is realisable, but not vice versa.

• If F is realisable then F is satisfiable, but not vice versa.
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• ℓ ≥ 0

• ℓ = ∫ 1

• ℓ = 30 ⇐⇒ ℓ = 10 ; ℓ = 20

• ((F ;G) ;H) ⇐⇒ (F ; (G ;H))

• ∫ L ≤ x

• ℓ = 2
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• I,V |=0 F (“I and V realise F from 0”) iff

∀ t ∈ Time : I,V, [0, t] |= F.

• F is called realisable from 0 iff some I and V realise F from 0.

• Intervals of the form [0, t] are called initial intervals.

• I |=0 F (“I realises F from 0”) iff ∀V ∈ Val : I,V |=0 F .

• |=0 F (“F is valid from 0”) iff ∀ interpretation I : I |=0 F .
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For all interpretations I, valuations V, and DC formulae F ,

(i) I,V |= F implies I,V |=0 F ,

(ii) if F is realisable then F is realisable from 0, but not vice versa,

(iii) F is valid iff F is valid from 0.



Specification and Semantics-based Correctness Proofs of Real-Time
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Methodology: Ideal World...
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(i) Choose a collection of observables ‘Obs’.

(ii) Provide the requirement/specification ‘Spec’
as a conjunction of DC formulae (over ‘Obs’).

(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).

(iv) We say ‘Ctrl’ is correct (wrt. ‘Spec’) iff

|=0 Ctrl =⇒ Spec.
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gas valve

flame sensor

ignition

(i) Choose observables:

• two boolean observables G and F

(i.e. Obs = {G,F}, D(G) = D(F ) = {0, 1})

• G = 1: gas valve open (output)

• F = 1: have flame (input)

• define L := G ∧ ¬F (leakage)

(ii) Provide the requirement:

Req : ⇐⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
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(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

• Des-1 : ⇐⇒ �(⌈L⌉ =⇒ ℓ ≤ 1)

• Des-2 : ⇐⇒ �(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)

(iv) Prove correctness:

• We want (or do we want |=0...?):

|= (Des-1 ∧ Des-2 =⇒ Req) (Thm. 2.16)



Gas Burner Revisited
–
0
5
–
2
0
1
4
-0
5
-2
0
–
S
d
cg

a
sb
u
rn
er

–

16/31

(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

• Des-1 : ⇐⇒ �(⌈L⌉ =⇒ ℓ ≤ 1)

• Des-2 : ⇐⇒ �(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)

(iv) Prove correctness:

• We want (or do we want |=0...?):

|= (Des-1 ∧ Des-2 =⇒ Req) (Thm. 2.16)

• We do show
|= Req-1 =⇒ Req (Lem. 2.17)

with the simplified requirement

Req-1 := �(ℓ ≤ 30 =⇒ ∫ L ≤ 1),
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.

• Let LI be any interpretation of L, and [b, e] an interval with e− b ≥ 60.
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Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.

• Let LI be any interpretation of L, and [b, e] an interval with e− b ≥ 60.

• Show “20 · ∫ L ≤ ℓ”, i.e.

IJ20 · ∫ L ≤ ℓK(V, [b, e]) = tt

i.e.

2̂0 ·̂

∫ e

b

LI(t) dt ≤̂ (e− b)
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|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)

• Set n := ⌈ e−b
30

⌉, i.e. n ∈ N with n− 1 < e−b
30

≤ n, and split the interval

b

b+ 30 b+ 60 b+ 30(n− 2)b+ 30(n− 1)

e

b+ 30n
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Theorem 2.18.
For all state assertions P and all real numbers r1, r2 ∈ R,

(i) |= ∫ P ≤ ℓ,

(ii) |= (∫ P = r1) ; (∫ P = r2) =⇒ ∫ P = r1 + r2,

(iii) |= ⌈¬P ⌉ =⇒ ∫ P = 0,

(iv) |= ⌈⌉ =⇒ ∫ P = 0.
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Claim:

|= (�(⌈L⌉ =⇒ ℓ ≤ 1)
︸ ︷︷ ︸

Des-1

∧�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)
︸ ︷︷ ︸

Des-2

) =⇒ �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

Proof:
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Claim:

(i) |= ∫ P ≤ ℓ, (iv) |= ⌈⌉ =⇒ ∫ P = 0
(ii) |= (∫ P = r1) ; (∫ P = r2)

=⇒ ∫ P = r1 + r2,
(iii) |= ⌈¬P ⌉ =⇒ ∫ P = 0,

|= (�(⌈L⌉ =⇒ ℓ ≤ 1)
︸ ︷︷ ︸

Des-1

∧�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)
︸ ︷︷ ︸

Des-2

) =⇒ �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

Proof:
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(i) Choose a collection of observables ‘Obs’.

(ii) Provide specification ‘Spec’ (conjunction of DC formulae (over ‘Obs’)).

(iii) Provide a description ‘Ctrl’ of the controller (DC formula (over ‘Obs’)).

(iv) Prove ‘Ctrl’ is correct (wrt. ‘Spec’).

That looks too simple to be practical. Typical obstacles:

(i) It may be impossible to realise ‘Spec’
if it doesn’t consider properties of the plant.

(ii) There are typically intermediate design levels between ‘Spec’ and ‘Ctrl’.

(iii) ‘Spec’ and ‘Ctrl’ may use different observables.

(iv) Proving validity of the implication is not trivial.
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)

• We shall specify such assumptions as a DC formula ‘Asm’ on the input
observables and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity
(from 0) of

Ctrl ∧ Asm =⇒ Spec
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• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)

• We shall specify such assumptions as a DC formula ‘Asm’ on the input
observables and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity
(from 0) of

Ctrl ∧ Asm =⇒ Spec

• Shall we care whether ‘Asm’ is satisfiable?
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• A top-down development approach may involve

• Spec — specification/requirements

• Des — design

• Ctrl — implementation

• Then correctness is established by proving validity of

Ctrl =⇒ Des (1)

and
Des =⇒ Spec (2)

(then concluding Ctrl =⇒ Spec by transitivity)

• Any preference on the order?
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• Assume, ‘Spec’ uses more abstract observables ObsA and ‘Ctrl’ more
concrete ones ObsC .

• For instance:

• in ObsA: only consider gas valve open or closed (D(G) = {0, 1})

• in ObsC : may control two valves and care for intermediate positions, for
instance, to react to different heating requests
(D(G1) = {0, 1, 2, 3},D(G2) = {0, 1, 2, 3})
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• Assume, ‘Spec’ uses more abstract observables ObsA and ‘Ctrl’ more
concrete ones ObsC .

• For instance:

• in ObsA: only consider gas valve open or closed (D(G) = {0, 1})

• in ObsC : may control two valves and care for intermediate positions, for
instance, to react to different heating requests
(D(G1) = {0, 1, 2, 3},D(G2) = {0, 1, 2, 3})

• To prove correctness, we need information how the observables are related
— an invariant which links the data values of ObsA and ObsC .

• If we’re given the linking invariant as a DC formula, say ‘LinkC,A’, then
proving correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving validity (from
0) of

Ctrl ∧ LinkC,A =⇒ Spec.

• For instance,
LinkC,A = ⌈G ⇐⇒ (G1 +G2 > 0)⌉
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• by hand on the basis of DC semantics,

• maybe supported by proof rules,

• sometimes a general theorem may fit (e.g. cycle times of PLC automata),

• algorithms as in Uppaal.
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abstraction
level

formal
description
language I

semantic
integration

automatic
verification

formal descr.
language II

Require-
ments

Duration
Calculus

Constraint
Diagrams

DC timed
automata

Live Seq.
Charts

satisfied by ⇒ ‖

Designs PLC-Automata DC
timed

automata

Programs C code
PLC code

logical

semantics

logical

semantics
compiler

(

equiv.

equiv.

equiv.

operational semantics

operational semantics
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