
–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

Real-Time Systems

Lecture 06: DC Properties I

2014-05-22

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
p
re
li
m

–

2/35

Last Lecture:

• DC Syntax and Semantics: Abbreviations (“almost everywhere”)

• Satisfiable/Realisable/Valid (from 0)

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What are obstacles on proving a design correct in the real-world, and how to
overcome them?

• Facts: decidability properties.

• What’s the idea of the considered (un)decidability proofs?

• Content:

• Semantical Correctness Proof

• (Un-)Decidable problems of DC variants in discrete and continuous time



Specification and Semantics-based Correctness Proofs of Real-Time

Systems with DC

–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

3/35

Methodology: Ideal World...

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cm

et
h
–

4/35

(i) Choose a collection of observables ‘Obs’.

(ii) Provide the requirement/specification ‘Spec’
as a conjunction of DC formulae (over ‘Obs’).

(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).

(iv) We say ‘Ctrl’ is correct (wrt. ‘Spec’) iff

|=0 Ctrl =⇒ Spec.



Gas Burner Revisited

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

5/35

gas valve
flame sensor

ignition

(i) Choose observables:

• two boolean observables G and F

(i.e. Obs = {G,F}, D(G) = D(F ) = {0, 1})

• G = 1: gas valve open (output)

• F = 1: have flame (input)

• define L := G ∧ ¬F (leakage)

(ii) Provide the requirement:

Req : ⇐⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)

Gas Burner Revisited

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

6/35

(iii) Provide a description ‘Ctrl’
of the controller in form of a DC formula (over ‘Obs’).
Here, firstly consider a design:

• Des-1 : ⇐⇒ �(⌈L⌉ =⇒ ℓ ≤ 1)

• Des-2 : ⇐⇒ �(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)

(iv) Prove correctness:

• We want (or do we want |=0 ...?):

|= (Des-1 ∧ Des-2 =⇒ Req) (Thm. 2.16)

• We do show
|= Req-1 =⇒ Req (Lem. 2.17)

with the simplified requirement

Req-1 := �(ℓ ≤ 30 =⇒ ∫ L ≤ 1),
• and we show

|= (Des-1 ∧ Des-2) =⇒ Req-1. (Lem. 2.19)



Gas Burner Revisited: Lemma 2.17

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

7/35

Claim:

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)
︸ ︷︷ ︸

Req

Proof:

• Assume ‘Req-1’.

• Let LI be any interpretation of L, and [b, e] an interval with e− b ≥ 60.

• Show “20 · ∫ L ≤ ℓ”, i.e.

IJ20 · ∫ L ≤ ℓK(V, [b, e]) = tt

i.e.

2̂0 ·̂

∫ e

b

LI(t) dt ≤̂ (e− b)

Gas Burner Revisited: Lemma 2.17

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

8/35

|= �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

=⇒ �(ℓ ≥ 60 =⇒ 20 · ∫ L ≤ ℓ)

• Set n := ⌈ e−b
30

⌉, i.e. n ∈ N with n− 1 < e−b
30

≤ n, and split the interval

b

b+ 30 b+ 60 b+ 30(n− 2)b+ 30(n− 1)

e

b+ 30n



Some Laws of the DC Integral Operator

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

9/35

Theorem 2.18.

For all state assertions P and all real numbers r1, r2 ∈ R,

(i) |= ∫ P ≤ ℓ,

(ii) |= (∫ P = r1) ; (∫ P = r2) =⇒ ∫ P = r1 + r2,

(iii) |= ⌈¬P ⌉ =⇒ ∫ P = 0,

(iv) |= ⌈⌉ =⇒ ∫ P = 0.

Gas Burner Revisited: Lemma 2.18

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
cg

a
sb
u
rn
er

–

10/35

Claim:

|= (�(⌈L⌉ =⇒ ℓ ≤ 1)
︸ ︷︷ ︸

Des-1

∧�(⌈L⌉ ; ⌈¬L⌉ ; ⌈L⌉ =⇒ ℓ > 30)
︸ ︷︷ ︸

Des-2

) =⇒ �(ℓ ≤ 30 =⇒ ∫ L ≤ 1)
︸ ︷︷ ︸

Req-1

Proof:



Obstacles in Non-Ideal World

–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

13/35

Methodology: The World is Not Ideal...

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
co

b
st

–

14/35

(i) Choose a collection of observables ‘Obs’.

(ii) Provide specification ‘Spec’ (conjunction of DC formulae (over ‘Obs’)).

(iii) Provide a description ‘Ctrl’ of the controller (DC formula (over ‘Obs’)).

(iv) Prove ‘Ctrl’ is correct (wrt. ‘Spec’).

That looks too simple to be practical. Typical obstacles:

(i) It may be impossible to realise ‘Spec’
if it doesn’t consider properties of the plant.

(ii) There are typically intermediate design levels between ‘Spec’ and ‘Ctrl’.

(iii) ‘Spec’ and ‘Ctrl’ may use different observables.

(iv) Proving validity of the implication is not trivial.



(i) Assumptions As A Form of Plant Model

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
co

b
st

–

15/35

• Often the controller will (or can) operate correctly only under some
assumptions.

• For instance, with a level crossing

• we may assume an upper bound on the speed of approaching trains,
(otherwise we’d need to close the gates arbitrarily fast)

• we may assume that trains are not arbitrarily slow in the crossing,
(otherwise we can’t make promises to the road traffic)

• We shall specify such assumptions as a DC formula ‘Asm’ on the input

observables and verify correctness of ‘Ctrl’ wrt. ‘Spec’ by proving validity
(from 0) of

Ctrl ∧ Asm =⇒ Spec

• Shall we care whether ‘Asm’ is satisfiable?

(ii) Intermediate Design Levels

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
co

b
st

–

16/35

• A top-down development approach may involve

• Spec — specification/requirements

• Des — design

• Ctrl — implementation

• Then correctness is established by proving validity of

Ctrl =⇒ Des (1)

and
Des =⇒ Spec (2)

(then concluding Ctrl =⇒ Spec by transitivity)

• Any preference on the order?



(iii): Different Observables

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
co

b
st

–

17/35

• Assume, ‘Spec’ uses more abstract observables ObsA and ‘Ctrl’ more
concrete ones ObsC .

• For instance:

• in ObsA: only consider gas valve open or closed (D(G) = {0, 1})

• in ObsC : may control two valves and care for intermediate positions, for
instance, to react to different heating requests
(D(G1) = {0, 1, 2, 3},D(G2) = {0, 1, 2, 3})

• To prove correctness, we need information how the observables are related
— an invariant which links the data values of ObsA and ObsC .

• If we’re given the linking invariant as a DC formula, say ‘LinkC,A’, then
proving correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving validity (from
0) of

Ctrl ∧ LinkC,A =⇒ Spec.

• For instance,
LinkC,A = ⌈G ⇐⇒ (G1 +G2 > 0)⌉

Obstacle (iv): How to Prove Correctness?

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
d
co

b
st

–

18/35

• by hand on the basis of DC semantics,

• maybe supported by proof rules,

• sometimes a general theorem may fit (e.g. cycle times of PLC automata),

• algorithms as in Uppaal.



DC Properties

–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

19/35

Decidability Results: Motivation

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
m
o
ti
v
–

20/35

• Recall:

Given assumptions as a DC formula ‘Asm’ on the input observables,
verifying correctness of ‘Ctrl’ wrt. ‘Spec’ amounts to proving

|=0 Ctrl ∧ Asm =⇒ Spec (1)

• If ‘Asm’ is not satisfiable then (1) is trivially valid,
and thus each ‘Ctrl’ correct wrt. ‘Spec’.

• So: strong interest in assessing the satisfiability of DC formulae.

• Question: is there an automatic procedure to help us out?
(a.k.a.: is it decidable whether a given DC formula is satisfiable?)

• More interesting for ‘Spec’: is it realisable (from 0)?

• Question: is it decidable whether a given DC formula is realisable?



Decidability Results for Realisability: Overview

–
0
6
–
2
0
1
4
-0
5
-2
2
–
S
m
o
ti
v
–

21/35

Fragment Discrete Time Continous Time

RDC decidable decidable

RDC + ℓ = r decidable for r ∈ N undecidable for r ∈ R
+

RDC + ∫ P1 = ∫ P2 undecidable undecidable

RDC + ℓ = x, ∀x undecidable undecidable

DC

References

–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

34/35



–
0
6
–
2
0
1
4
-0
5
-2
2
–
m
a
in

–

35/35

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time
Systems - Formal Specificat ion and Automat ic Verificat ion. Cambridge
University Press.


