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Real-Time Systems

Lecture 9: DC Properties IIa
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Last Lecture:

• DC Implementables

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Facts: (un)decidability properties of DC in discrete/continuous time.

• What’s the idea of the considered (un)decidability proofs?

• Content:

• RDC in discrete time cont’d

• Satisfiability and realisability from 0 is decidable for RDC in discrete time

• Undecidable problems of DC in continuous time



RDC in Discrete Time Cont’d
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Restricted DC (RDC)
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F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2

where P is a state assertion, but with boolean observables only.

Note:

• No global variables, thus don’t need V.

•



Discrete Time Interpretations

–
9
–
2
0
1
4
-0
6
-2
4
–
S
d
is
c
–

5/36

• An interpretation I is called discrete time interpretation if and only if,
for each state variable X,

XI : Time → D(X)

with

• Time = R
+
0 ,

• all discontinuities are in N0.

• An interval [b, e] ⊂ Intv is called discrete if and only if b, e ∈ N0.

• We say (for a discrete time interpretation I and a discrete interval [b, e])

I, [b, e] |= F1 ; F2

if and only if there exists m ∈ [b, e] ∩N0 such that

I, [b,m] |= F1 and I, [m, e] |= F2

Differences between Continuous and Discrete Time
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• Let P be a state assertion.

Continuous Time Discrete Time

|=? (⌈P ⌉ ; ⌈P ⌉)
✔ ✔

=⇒ ⌈P ⌉

|=? ⌈P ⌉ =⇒
✔ ✘

(⌈P ⌉ ; ⌈P ⌉)

• In particular: ℓ = 1 ⇐⇒ (⌈1⌉ ∧ ¬(⌈1⌉ ; ⌈1⌉)) (in discrete time).



Expressiveness of RDC
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• ℓ = 1 ⇐⇒ ⌈1⌉ ∧ ¬(⌈1⌉ ; ⌈1⌉)

• ℓ = 0 ⇐⇒ ¬⌈1⌉

• true ⇐⇒ ℓ = 0 ∨ ¬(ℓ = 0)

• ∫ P = 0 ⇐⇒ ⌈¬P ⌉ ∨ ℓ = 0

• ∫ P = 1 ⇐⇒ (∫ P = 0) ; (⌈P ⌉ ∧ ℓ = 1) ; (∫ P = 0)

• ∫ P = k + 1 ⇐⇒ (∫ P = k) ; (∫ P = 1)

• ∫ P ≥ k ⇐⇒ (∫ P = k) ; true

• ∫ P > k ⇐⇒ ∫ P ≥ k + 1

• ∫ P ≤ k ⇐⇒ ¬(∫ P > k)

• ∫ P < k ⇐⇒ ∫ P ≤ k − 1

where k ∈ N.

Decidability of Satisfiability/Realisability from 0
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Theorem 3.6.

The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.



Sketch: Proof of Theorem 3.6
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• give a procedure to construct, given a formula F , a regular language L(F )
such that

I, [0, n] |= F if and only if w ∈ L(F )

where word w describes I on [0, n]
(suitability of the procedure: Lemma 3.4)

• then F is satisfiable in discrete time if and only if L(F ) is not empty
(Lemma 3.5)

• Theorem 3.6 follows because

• L(F ) can effectively be constructed,

• the emptyness problem is decidable for regular languages.



Construction of L(F )
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• Idea:

• alphabet Σ(F ) consists of basic conjuncts of the state variables in F ,

• a letter corresponds to an interpretation on an interval of length 1,

• a word of length n describes an interpretation on interval [0, n].

• Example: Assume F contains exactly state variables X,Y, Z, then

Σ(F ) = {X ∧ Y ∧ Z,X ∧ Y ∧ ¬Z,X ∧ ¬Y ∧ Z,X ∧ ¬Y ∧ ¬Z,

¬X ∧ Y ∧ Z,¬X ∧ Y ∧ ¬Z,¬X ∧ ¬Y ∧ Z,¬X ∧ ¬Y ∧ ¬Z}.

Time

1

0
XI

1

0
YI

1

0
ZI

0 1 2 3 4

w = (¬X ∧ ¬Y ∧ ¬Z)

·(X ∧ ¬Y ∧ ¬Z)

·(X ∧ Y ∧ ¬Z)

·(X ∧ Y ∧ Z) ∈ Σ(F )∗

Construction of L(F ) more Formally
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Definition 3.2. A word w = a1 . . . an ∈ Σ(F )∗ with n ≥ 0 de-

scribes a discrete interpretation I on [0, n] if and only if

∀ j ∈ {1, . . . , n} ∀ t ∈ ]j − 1, j[ : IJajK(t) = 1.

For n = 0 we put w = ε.

• Each state assertion P can be transformed into an equivalent disjunctive
normal form

∨m
i=1

ai with ai ∈ Σ(F ).

• Set DNF (P ) := {a1, . . . , am} (⊆ Σ(F )).

• Define L(F ) inductively:

L(⌈P ⌉) = DNF (P )+,

L(¬F1) = Σ(F )∗ \ L(F1),

L(F1 ∨ F2) = L(F1) ∪ L(F2),

L(F1 ; F2) = L(F1) · L(F2).



Lemma 3.4
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Lemma 3.4. For all RDC formulae F , discrete interpretations I,
n ≥ 0, and all words w ∈ Σ(F )∗ which describe I on [0, n],

I, [0, n] |= F if and only if w ∈ L(F ).

Sketch: Proof of Theorem 3.9
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Theorem 3.9.

The realisability problem for RDC with discrete time is decidable.

• kern(L) contains all words of L whose prefixes are again in L.

• If L is regular, then kern(L) is also regular.

• kern(L(F )) can effectively be constructed.

• We have

Lemma 3.8. For all RDC formulae F , F is realisable from 0 in
discrete time if and only if kern(L(F )) is infinite.

• Infinity of regular languages is decidable.



(Variants of) RDC in Continuous Time
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Recall: Restricted DC (RDC)
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F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2

where P is a state assertion, but with boolean observables only.

From now on: “RDC + ℓ = x, ∀x”

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2 | ℓ = 1 | ℓ = x | ∀x • F1



Undecidability of Satisfiability/Realisability from 0
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Theorem 3.10.

The realisability from 0 problem for DC with continuous time is
undecidable, not even semi-decidable.

Theorem 3.11.

The satisfiability problem for DC with continuous time is undecid-
able.

Sketch: Proof of Theorem 3.10
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Reduce divergence of two-counter machines to realisability from 0:

• Given a two-counter machine M with final state qfin ,

• construct a DC formula F (M) := encoding(M)

• such that

M diverges if and only if the DC formula

F (M) ∧ ¬♦⌈qfin⌉

is realisable from 0.

• If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn’t).



Recall: Two-counter machines
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A two-counter machine is a structure

M = (Q, q0, qfin ,Prog)

where

• Q is a finite set of states,

• comprising the initial state q0 and the final state qfin

• Prog is the machine program, i.e. a finite set of commands of the form

q : inci : q
′ and q : deci : q

′, q′′, i ∈ {1, 2}.

• We assume deterministic 2CM: for each q ∈ Q, at most one command
starts in q, and qfin is the only state where no command starts.

2CM Configurations and Computations
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• a configuration of M is a triple K = (q, n1, n2) ∈ Q×N0 ×N0.

• The transition relation “⊢” on configurations is defined as follows:

Command Semantics: K ⊢ K ′

q : inc1 : q′ (q, n1, n2) ⊢ (q′, n1 + 1, n2)
q : dec1 : q′, q′′ (q, 0, n2) ⊢ (q′, 0, n2)

(q, n1 + 1, n2) ⊢ (q′′, n1, n2)

q : inc2 : q′ (q, n1, n2) ⊢ (q′, n1, n2 + 1)
q : dec2 : q′, q′′ (q, n1, 0) ⊢ (q′, n1, 0)

(q, n1, n2 + 1) ⊢ (q′′, n1, n2)

• The (!) computation of M is a finite sequence of the form (“M halts”)

K0 = (q0, 0, 0) ⊢ K1 ⊢ K2 ⊢ · · · ⊢ (qfin , n1, n2)

or an infinite sequence of the form (“M diverges”)

K0 = (q0, 0, 0) ⊢ K1 ⊢ K2 ⊢ . . .



2CM Example
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• M = (Q, q0, qfin ,Prog)

• commands of the form q : inci : q
′ and q : deci : q

′, q′′, i ∈ {1, 2}

• configuration K = (q, n1, n2) ∈ Q×N0 ×N0.

•

Command Semantics: K ⊢ K ′

q : inc1 : q
′ (q, n1, n2) ⊢ (q′, n1 + 1, n2)

q : dec1 : q
′, q′′ (q, 0, n2) ⊢ (q′, 0, n2)

(q, n1 + 1, n2) ⊢ (q′′, n1, n2)

q : inc2 : q
′ (q, n1, n2) ⊢ (q′, n1, n2 + 1)

q : dec2 : q
′, q′′ (q, n1, 0) ⊢ (q′, n1, 0)

(q, n1, n2 + 1) ⊢ (q′′, n1, n2)

Reducing Divergence to DC realisability: Idea In

Pictures
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Reducing Divergence to DC realisability: Idea
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• A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

• An interpretation on ‘Time’ encodes the computation of M if

• each interval [4n, 4(n+ 1)], n ∈ N0, encodes a configuration Kn,

• each two subsequent intervals [4n, 4(n+ 1)] and [4(n+ 1), 4(n+ 2)],
n ∈ N0, encode configurations Kn ⊢ Kn+1 in transition relation.

• Being encoding of the run can be characterised by DC formula F (M).

• Then M diverges if and only if F (M) ∧ ¬♦⌈qfin⌉ is realisable from 0.

Encoding Configurations
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• We use Obs = {obs} with
D(obs) = QM ∪̇ {C1, C2, B,X}.

Examples:

• K = (q, 2, 3)




⌈q⌉
∧

ℓ = 1



;





⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉
∧

ℓ = 1



;





⌈X⌉
∧

ℓ = 1



;





⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉ ; ⌈C2⌉ ; ⌈B⌉
∧

ℓ = 1





• K0 = (q0, 0, 0)




⌈q0⌉
∧

ℓ = 1



 ;





⌈B⌉
∧

ℓ = 1



 ;





⌈X⌉
∧

ℓ = 1



 ;





⌈B⌉
∧

ℓ = 1





or, using abbreviations, ⌈q0⌉
1
; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B⌉1.



Construction of F (M)
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In the following, we give DC formulae describing

• the initial configuration,

• the general form of configurations,

• the transitions between configurations,

• the handling of the final state.

F (M) is the conjunction of all these formulae.

Initial and General Configurations
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init :⇐⇒ (ℓ ≥ 4 =⇒ ⌈q0⌉
1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B⌉1 ; true)

keep :⇐⇒ �(⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1)

where Q := ¬(X ∨ C1 ∨ C2 ∨B).



Auxiliary Formula Pattern copy
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copy(F, {P1, . . . , Pn}) :⇐⇒

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈P1⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈P1⌉

. . .

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈Pn⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈Pn⌉

q : inc1 : q
′ (Increment)
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(i) Change state

�(⌈q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; true)

(ii) Increment counter

∀ d •�(⌈q⌉1 ; ⌈B⌉d ; (ℓ = 0 ∨ ⌈C1⌉ ; ⌈¬X⌉) ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈q′⌉1 ; (⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ∧ ℓ = d) ; true



q : inc1 : q
′ (Increment)
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(i) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈C1⌉, {B,C1})

(ii) Leave second counter unchanged

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈X⌉1, {B,C2})

q : dec1 : q
′, q′′ (Decrement)
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(i) If zero

�(⌈q⌉1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B ∨C2⌉
1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; ⌈B⌉1 ; true)

(ii) Decrement counter

∀ d •�(⌈q⌉1 ; (⌈B⌉ ; ⌈C1⌉ ∧ ℓ = d) ; ⌈B⌉ ; ⌈B ∨ C1⌉ ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ =

=⇒ ℓ = 4 ; ⌈q′′⌉1 ; ⌈B⌉d ; true)

(iii) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B1⌉, {B,C1})



Final State
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copy(⌈qfin⌉
1 ; ⌈B ∨ C1⌉

1 ; ⌈X⌉ ; ⌈B ∨ C2⌉
1, {qfin , B,X,C1, C2})

Satisfiability
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• Following [Chaochen and Hansen, 2004] we can observe that

M halts if and only if the DC formula F (M) ∧ ♦⌈qfin⌉ is satisfiable.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

• Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F (M) ∧ ¬♦⌈qfin⌉ is not satisfiable.

• Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.



Validity
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• By Remark 2.13, F is valid iff ¬F is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

Validity
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• By Remark 2.13, F is valid iff ¬F is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

• This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC”):



Validity
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• By Remark 2.13, F is valid iff ¬F is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.

• This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC”):

• Suppose there were such a calculus C.

• By Lemma 2.22 it is semi-decidable
whether a given DC formula F is a theorem in C.

• By the soundness and completeness of C,
F is a theorem in C if and only if F is valid.

• Thus it is semi-decidable whether F is valid. Contradiction.

Discussion
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• Note: the DC fragment defined by the following grammar is sufficient for
the reduction

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2 | ℓ = 1 | ℓ = x | ∀x • F1,

P a state assertion, x a global variable.

• Formulae used in the reduction are abbreviations:

ℓ = 4 ⇐⇒ ℓ = 1 ; ℓ = 1 ; ℓ = 1 ; ℓ = 1

ℓ ≥ 4 ⇐⇒ ℓ = 4 ; true

ℓ = x+ y + 4 ⇐⇒ ℓ = x ; ℓ = y ; ℓ = 4

• Length 1 is not necessary — we can use ℓ = z instead, with fresh z.

• This is RDC augmented by “ℓ = x” and “∀x”,
which we denote by RDC + ℓ = x, ∀x.
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