# Real-Time Systems Lecture 9: DC Properties IIa

### 2014-06-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

### Contents & Goals

#### Last Lecture:

• DC Implementables

#### This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
  - Facts: (un)decidability properties of DC in discrete/continuous time.
  - What's the idea of the considered (un)decidability proofs?

#### • Content:

- RDC in discrete time cont'd
- Satisfiability and realisability from 0 is decidable for RDC in discrete time
- Undecidable problems of DC in continuous time

RDC in Discrete Time Cont'd

# Restricted DC (RDC)

 $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1$ ;  $F_2$ 

where  ${\cal P}$  is a state assertion, but with  ${\bf boolean}$  observables only.

Note:

• No global variables, thus don't need  $\mathcal{V}$ .

•

## Discrete Time Interpretations

• An interpretation  $\mathcal{I}$  is called **discrete time interpretation** if and only if, for each state variable X,

$$X_{\mathcal{I}}: \mathsf{Time} \to \mathcal{D}(X)$$

with

- 9 - 2014-06-24 - Sdisc -

- Time =  $\mathbb{R}^+_0$ ,
- all discontinuities are in  $\mathbb{N}_0$ .
- An interval  $[b, e] \subset Intv$  is called **discrete** if and only if  $b, e \in \mathbb{N}_0$ .
- We say (for a discrete time interpretation  $\mathcal{I}$  and a discrete interval [b, e])

$$\mathcal{I}, [b, e] \models F_1$$
;  $F_2$ 

if and only if there exists  $m \in [b,e] \cap \mathbb{N}_0$  such that

$$\mathcal{I}, [b,m] \models F_1$$
 and  $\mathcal{I}, [m,e] \models F_2$ 

5/36

# Differences between Continuous and Discrete Time

• Let P be a state assertion.

|                                                                              | Continuous Time | Discrete Time |
|------------------------------------------------------------------------------|-----------------|---------------|
| $\models^{?} (\lceil P \rceil; \lceil P \rceil) \\ \implies \lceil P \rceil$ | ~               | r             |
| $\models^{?} \lceil P \rceil \implies$ $(\lceil P \rceil; \lceil P \rceil)$  | v               | ×             |

- 9 - 2014-06-24 - Sdisc -

• In particular:  $\ell = 1 \iff (\lceil 1 \rceil \land \neg (\lceil 1 \rceil; \lceil 1 \rceil))$  (in discrete time).

# Expressiveness of RDC

•  $\ell = 1$   $\iff \lceil 1 \rceil \land \neg (\lceil 1 \rceil; \lceil 1 \rceil)$ •  $\ell = 0$   $\iff \neg \lceil 1 \rceil$ • true  $\iff \ell = 0 \lor \neg (\ell = 0) 0$ •  $\int P = 0$   $\iff \lceil \neg \rceil \lor \langle \ell = 0 \rangle$ ;  $( \lceil P \rceil \land \ell = \eta); ( \langle \rho = 0 \rangle = 0)$ •  $\int P = k + 1 \iff (\int P = k; \int P = \ell = 1)$ •  $\int P \ge k \iff (\int P = k); \ell = \ell = 1$ •  $\int P \ge k \iff (\int P = k); \ell = \ell = 1$ •  $\int P \ge k \iff \neg (\int P \ge k)$ •  $\int P < k \iff \neg (\int P \ge k)$ where  $k \in \mathbb{N}$ .

7/36

# Decidability of Satisfiability/Realisability from 0

**Theorem 3.6.** The satisfiability problem for RDC with discrete time is decidable.

**Theorem 3.9.** The realisability problem for RDC with discrete time is decidable.



# Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F, a regular language  $\mathcal{L}(F)$  such that

 $\mathcal{I}, [0, n] \models F$  if and only if  $w \in \mathcal{L}(F)$ 

where word w describes  $\mathcal{I}$  on [0, n](suitability of the procedure: Lemma 3.4)

- then F is satisfiable in discrete time if and only if  $\mathcal{L}(F)$  is not empty (Lemma 3.5)
- Theorem 3.6 follows because
  - $\mathcal{L}(F)$  can effectively be constructed,
  - the emptyness problem is decidable for regular languages.

# Construction of $\mathcal{L}(F)$

#### • Idea:

- 9 - 2014-06-24 - Sdisc

- 9 - 2014-06-24 - Sdisc -

- alphabet  $\Sigma(F)$  consists of basic conjuncts of the state variables in F,
- a letter corresponds to an interpretation on an interval of length 1,
- a word of length n describes an interpretation on interval [0, n].
- **Example:** Assume F contains exactly state variables X, Y, Z, then

$$\Sigma(F) = \{ \underbrace{X \land Y \land Z}_{, X \land Y \land \neg Z, X \land \neg Y \land Z, X \land \neg Y \land \neg Z,}_{\neg X \land Y \land Z, \neg X \land Y \land \neg Z, \neg X \land \neg Y \land Z, \neg X \land \neg Y \land \neg Z,}_{\neg X \land Y \land \neg Z, \neg X \land \neg Y \land \neg Z } .$$



*Construction of*  $\mathcal{L}(F)$  *more Formally* 

**Definition 3.2.** A word  $w = a_1 \dots a_n \in \Sigma(F)^*$  with  $n \ge 0$  describes a discrete interpretation  $\mathcal{I}$  on [0, n] if and only if

$$\forall j \in \{1, \dots, n\} \ \forall t \in [j - 1, j] : \mathcal{I}[[a_j]](t) = 1.$$

For n = 0 we put  $w = \varepsilon$ .

• Each state assertion P can be transformed into an equivalent disjunctive normal form  $\bigvee_{i=1}^{m} a_i$  with  $a_i \in \Sigma(F)$ . DUF(XATY)=

• Set 
$$DNF(P) := \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$$
.  
• Define  $\mathcal{L}(F)$  inductively:  
 $\mathcal{L}(F) = \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$ .  
• Define  $\mathcal{L}(F)$  inductively:  
 $\mathcal{L}(F) = \{a_1, \ldots, a_m\} (\subseteq \Sigma(F))$ .  
• Define  $\mathcal{L}(F)$  inductively:

• Define  $\mathcal{L}(F)$  inductively:

 $\mathcal{L}(\lceil P \rceil) = \mathsf{DAF}(\mathsf{P})^+$  $\mathcal{L}(\neg F_1) = \mathfrak{D}(\mathcal{F})^* \setminus \mathscr{L}(\mathcal{F}_1),$  $\mathcal{L}(F_1 \vee F_2) = \texttt{V(F_1)} \vee \texttt{V(F_2)} , \quad (\texttt{perf}) \text{ regulas} \\ \mathcal{L}(F_1; F_2) = \texttt{V(F_1)}, \quad \texttt{V(F_2)} .$ 

## Lemma 3.4

**Lemma 3.4.** For all RDC formulae F, discrete interpretations  $\mathcal{I}$ ,  $n \geq 0$ , and all words  $w \in \Sigma(F)^*$  which **describe**  $\mathcal{I}$  on [0, n],

 $\mathcal{I}, [0, n] \models F$  if and only if  $w \in \mathcal{L}(F)$ .

Roof: Stuctural induction.

Sect  $\overline{F}$ : Let  $W = a_{1,1}..., a_{n}$ ,  $n \ge 0$ , describe  $\overline{I}$  on [0, n].  $I, [0, n] \neq [P] \Leftrightarrow I, [0, n] \neq [P]$  and  $n \ge 1$   $(\Rightarrow n \ge 1$  and  $\forall 1 \le j \le n \circ I, [j - 1, j] \neq [P]$   $describes ((\Rightarrow n \ge 1) \text{ and } \forall 1 \le j \le n \circ I, [j - 1, j] \neq [P] \land [a_{j}] \text{ and } a_{j} \in DNF(P]$   $describes ((\Rightarrow n \ge 1) \text{ and } \forall 1 \le j \le n \circ a_{j} \in DNF(P)$  let  $c \ge n$   $(\Rightarrow w \in DNF(P)^{+}$   $(\Rightarrow w \in U(\GammaPI))$   $\underbrace{Heps: \circ TF_{n}}_{\circ T, v \neq \frac{1}{2}}$   $\circ T, j \neq_{2}$   $\circ T, j \neq_{2}$ 12/36

Sketch: Proof of Theorem 3.9

**Theorem 3.9.** The realisability problem for RDC with discrete time is decidable.

- kern(L) contains all words of L whose prefixes are again in L.
- If L is regular, then kern(L) is also regular.
- $kern(\mathcal{L}(F))$  can effectively be constructed.
- We have

**Lemma 3.8.** For all RDC formulae F, F is realisable from 0 in discrete time if and only if  $kern(\mathcal{L}(F))$  is infinite.

- 9 - 2014-06-24 - Sdisc

• Infinity of regular languages is decidable.

(Variants of) RDC in Continuous Time

15/36

# Recall: Restricted DC (RDC)

 $F ::= \lceil P \rceil \mid \neg F_1 \mid F_1 \lor F_2 \mid F_1$  ;  $F_2$ 

where P is a state assertion, but with **boolean** observables **only**.

From now on: "RDC +  $\ell = x, \forall x$ "

 $F::=\lceil P
ceil\mid \neg F_1\mid F_1\lor F_2\mid F_1$  ;  $F_2\mid \ell=1\mid \ell=x\mid orall xullet F_1$ 

Theorem 3.10.

The realisability from 0 problem for DC with **continuous time** is undecidable, not even semi-decidable.

Theorem 3.11.

The satisfiability problem for DC with continuous time is undecidable.

17/36

# Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0:

- Given a two-counter machine  ${\cal M}$  with final state  $q_{fin}$ ,
- construct a DC formula  $F(\mathcal{M}) := encoding(\mathcal{M})$
- such that

 ${\mathcal M} \mbox{ diverges } \mbox{ if and only if } \mbox{ the DC formula }$ 

 $F(\mathcal{M}) \land \neg \Diamond \lceil q_{fin} \rceil$ 

### is realisable from 0.

 If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn't). A two-counter machine is a structure

$$\mathcal{M} = (\mathcal{Q}, q_0, q_{fin}, Prog)$$

where

- 9 - 2014-06-24 - Scont

- 9 - 2014-06-24 - Scont -

• Q is a finite set of states,

50

- comprising the initial state  $q_0$  and the final state  $q_{fin}$
- Prog is the machine program, i.e. a finite set of commands of the form

$$q:inc_q:q'$$
 and  $q:dec_i:q',q'', i \in \{1,2\}.$   
 $q:inc_2:q'$   
Lee shole definition state

• We assume **deterministic** 2CM: for each  $q \in Q$ , at most one command starts in q, and  $q_{fin}$  is the only state where no command starts.

19/36

- $\begin{array}{c} \hline 2CM \ Configurations \ and \ Computations \\ \bullet \ a \ configuration \ of \ \mathcal{M} \ is \ a \ triple \ K = (q, n_1, n_2) \in \mathcal{Q} \times \mathbb{N}_0 \times \mathbb{N}_0. \end{array}$ 
  - The transition relation "⊢" on configurations is defined as follows:

| Command                                                    | Semantics: $K \vdash K'$                                                                                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $egin{array}{ll} q:inc_1:q' \ q:dec_1:q',q'' \end{array}$  | $\begin{array}{c} (q,n_1,n_2) \vdash (q',n_1+1,n_2) \\ (q,0,n_2) \vdash (q',0,n_2) \\ (q,n_1+1,n_2) \vdash (q'',n_1,n_2) \end{array}$ |
| $\begin{array}{l} q:inc_2:q'\\ q:dec_2:q',q'' \end{array}$ | $\begin{array}{c} (q,n_1,n_2) \vdash (q',n_1,n_2+1) \\ (q,n_1,0) \vdash (q',n_1,0) \\ (q,n_1,n_2+1) \vdash (q'',n_1,n_2) \end{array}$ |

• The (!) **computation** of  $\mathcal{M}$  is a finite sequence of the form  $("\mathcal{M} halts")$ 

$$K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \dots \vdash (q_{fin}, n_1, n_2)$$

or an infinite sequence of the form

(" $\mathcal{M}$  diverges")

$$K_0 = (q_0, 0, 0) \vdash K_1 \vdash K_2 \vdash \dots$$

## 2CM Example



21/36

Reducing Divergence to DC realisability: Idea In

**Pictures** F(M) intuitively requires: 201 M direges -[0,d] encodes (go,0,0) if, - [nd, (n+1) d] encodes a configuration exists n: ko+k1+ ... - [nd, (n+1) d] and [(n+1) d, (n+2) d] encode configurations which are in 2-Relations ï₽, exist - if quin is reached, IΛ we stay there 1 ("I describes Tr") - 9 - 2014-06-24 - Scont and IFoF(M) 1 - STgfr 7 22/36

# Reducing Divergence to DC realisability: Idea

- A single configuration K of M can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.
- An interpretation on 'Time' encodes the computation of  ${\cal M}$  if
  - each interval [4n, 4(n+1)],  $n \in \mathbb{N}_0$ , encodes a configuration  $K_n$ ,
  - each two subsequent intervals [4n, 4(n+1)] and [4(n+1), 4(n+2)],  $n \in \mathbb{N}_0$ , encode configurations  $K_n \vdash K_{n+1}$  in transition relation.
- Being encoding of the run can be characterised by DC formula  $F(\mathcal{M})$ .
- Then *M* diverges if and only if *F*(*M*) ∧ ¬◊[*q<sub>fin</sub>*] is realisable from 0.

- 9 - 2014-06-24 - Scont





# *Construction of* $F(\mathcal{M})$

In the following, we give DC formulae describing

- the initial configuration,
- the general form of configurations,
- the transitions between configurations,
- the handling of the final state.

 $F(\mathcal{M})$  is the conjunction of all these formulae.

25/36

Initial and General Configurations

 $init:\iff (\ell\geq 4\implies \lceil q_0\rceil^1; \lceil B\rceil^1; \lceil X\rceil^1; \lceil B\rceil^1; true)$ 

 $\begin{aligned} keep : & \Longleftrightarrow \Box(\lceil Q \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = 4 \\ & \Longrightarrow \ \ell = 4; \lceil Q \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1) \end{aligned}$ where  $Q := \neg (X \lor C_1 \lor C_2 \lor B).$ 

- 9 - 2014-06-24 - Scont -

Auxiliary Formula Pattern copy

$$copy(F, \{P_1, \dots, P_n\}) :\iff$$

$$\forall c, d \bullet \Box((F \land \ell = c); (\lceil P_1 \lor \dots \lor P_n \rceil \land \ell = d); \lceil P_1 \rceil; \ell = 4$$

$$\implies \ell = c + d + 4; \lceil P_1 \rceil$$

$$\dots$$

$$\forall c, d \bullet \Box((F \land \ell = c); (\lceil P_1 \lor \dots \lor P_n \rceil \land \ell = d); \lceil P_n \rceil; \ell = 4$$

$$\implies \ell = c + d + 4; \lceil P_n \rceil$$

27/36

# $q: inc_1: q'$ (Increment)

(i) Change state

 $\Box(\lceil q \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = 4 \implies \ell = 4; \lceil q' \rceil^1; true)$ 

(ii) Increment counter

$$\forall d \bullet \Box(\lceil q \rceil^1; \lceil B \rceil^d; (\ell = 0 \lor \lceil C_1 \rceil; \lceil \neg X \rceil); \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = 4$$
$$\implies \ell = 4; \lceil q' \rceil^1; (\lceil B \rceil; \lceil C_1 \rceil; \lceil B \rceil \land \ell = d); true$$

 $q: inc_1: q'$  (Increment)

(i) Keep rest of first counter

 $copy(\lceil q \rceil^1; \lceil B \lor C_1 \rceil; \lceil C_1 \rceil, \{B, C_1\})$ 

(ii) Leave second counter unchanged

 $copy(\lceil q\rceil^1$  ;  $\lceil B \vee C_1 \rceil$  ;  $\lceil X\rceil^1, \{B, C_2\})$ 

- 9 - 2014-06-24 - Scont -

29/36

$$q: dec_1: q', q''$$
 (Decrement)

(i) If zero

 $\Box(\lceil q\rceil^1;\lceil B\rceil^1;\lceil X\rceil^1;\lceil B\vee C_2\rceil^1;\ell=4\implies \ell=4;\lceil q'\rceil^1;\lceil B\rceil^1;true)$ 

(ii) Decrement counter

$$\forall d \bullet \Box(\lceil q \rceil^1; (\lceil B \rceil; \lceil C_1 \rceil \land \ell = d); \lceil B \rceil; \lceil B \lor C_1 \rceil; \lceil X \rceil^1; \lceil B \lor C_2 \rceil^1; \ell = \implies \ell = 4; \lceil q'' \rceil^1; \lceil B \rceil^d; true)$$

(iii) Keep rest of first counter

$$copy(\lceil q \rceil^1; \lceil B \rceil; \lceil C_1 \rceil; \lceil B_1 \rceil, \{B, C_1\})$$

# Final State

 $copy(\lceil q_{fin} \rceil^1; \lceil B \lor C_1 \rceil^1; \lceil X \rceil; \lceil B \lor C_2 \rceil^1, \{q_{fin}, B, X, C_1, C_2\})$ 

31/36

# Satisfiability

• Following [Chaochen and Hansen, 2004] we can observe that

 $\mathcal{M}$  halts if and only if the DC formula  $F(\mathcal{M}) \land \Diamond \lceil q_{fin} \rceil$  is satisfiable.

This yields

**Theorem 3.11.** The satisfiability problem for DC with continuous time is undecidable.

(It is semi-decidable.)

• Furthermore, by taking the contraposition, we see

 $\begin{array}{lll} \mathcal{M} \text{ diverges} & \text{if and only if} & \mathcal{M} \text{ does not halt} \\ & \text{if and only if} & F(\mathcal{M}) \wedge \neg \Diamond \lceil q_{fin} \rceil \text{ is not satisfiable.} \end{array}$ 

• Thus whether a DC formula is **not satisfiable** is not decidable, not even semi-decidable.

- 9 - 2014-06-24 - Scont -

# Validity

• By Remark 2.13, F is valid iff  $\neg F$  is not satisfiable, so

**Corollary 3.12.** The validity problem for DC with continuous time is undecidable, not even semi-decidable.

33/36

# Validity

• By Remark 2.13, F is valid iff  $\neg F$  is not satisfiable, so

**Corollary 3.12.** The validity problem for DC with continuous time is undecidable, not even semi-decidable.

• This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):

### Validity

- 9 - 2014-06-24 - Scont -

• By Remark 2.13, F is valid iff  $\neg F$  is not satisfiable, so

**Corollary 3.12.** The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
  - Suppose there were such a calculus C.
  - By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in C.
  - By the soundness and completeness of C, F is a theorem in C if and only if F is valid.
  - Thus it is semi-decidable whether F is valid. Contradiction.

33/36

# Discussion

 Note: the DC fragment defined by the following grammar is sufficient for the reduction

 $F ::= [P] | \neg F_1 | F_1 \lor F_2 | F_1; F_2 | \ell = 1 | \ell = x | \forall x \bullet F_1,$ 

P a state assertion, x a global variable.

• Formulae used in the reduction are abbreviations:

$$\begin{split} \ell &= 4 \iff \ell = 1 \text{; } \ell = 1 \text{; } \ell = 1 \text{; } \ell = 1 \\ \ell &\geq 4 \iff \ell = 4 \text{; } true \\ \ell &= x + y + 4 \iff \ell = x \text{; } \ell = y \text{; } \ell = 4 \end{split}$$

- 9 2014-06-24 Scont -
- Length 1 is not necessary we can use  $\ell=z$  instead, with fresh z.

• This is RDC augmented by " $\ell = x$ " and " $\forall x$ ", which we denote by **RDC** +  $\ell = x, \forall x$ .

References

- [Chaochen and Hansen, 2004] Chaochen, Z. and Hansen, M. R. (2004). Duration Calculus: A Formal Approach to Real-Time Systems. Monographs in Theoretical Computer Science. Springer-Verlag. An EATCS Series.
- [Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.