Real-Time Systems
Lecture 9: DC Properties IIa
2014-06-24
Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- DC Implementables

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Facts: (un)decidability properties of DC in discrete/continuous time.
- What's the idea of the considered (un)decidability proofs?
- Content:
- RDC in discrete time cont'd
- Satisfiability and realisability from 0 is decidable for RDC in discrete time
- Undecidable problems of DC in continuous time

Restricted DC (RDC)

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2} \mid F_{1} ; F_{2}
$$

where P is a state assertion, but with boolean observables only.

Note:

- No global variables, thus don't need \mathcal{V}.

Discrete Time Interpretations

- An interpretation \mathcal{I} is called discrete time interpretation if and only if, for each state variable X,

$$
X_{\mathcal{I}}: \text { Time } \rightarrow \mathcal{D}(X)
$$

with

- Time $=\mathbb{R}_{0}^{+}$,
- all discontinuities are in \mathbb{N}_{0}.
- An interval $[b, e] \subset$ Intv is called discrete if and only if $b, e \in \mathbb{N}_{0}$.
- We say (for a discrete time interpretation \mathcal{I} and a discrete interval $[b, e]$)

$$
\mathcal{I},[b, e] \models F_{1} ; F_{2}
$$

if and only if there exists $m \in[b, e] \cap \mathbb{N}_{0}$ such that

$$
\mathcal{I},[b, m] \models F_{1} \quad \text { and } \quad \mathcal{I},[m, e] \models F_{2}
$$

Differences between Continuous and Discrete Time

- Let P be a state assertion.

	Continuous Time	Discrete Time
$\vDash ?(\lceil P\rceil$; $\lceil P\rceil)$	\checkmark	\checkmark
$\models^{?}\lceil P\rceil \Longrightarrow$	\checkmark	x

- In particular: $\ell=1 \Longleftrightarrow(\lceil 1\rceil \wedge \neg(\lceil 1\rceil ;\lceil 1\rceil))$ (in discrete time).

Expressiveness of RDC

$$
\text { where } k \in \mathbb{N} \text {. }
$$

Decidability of Satisfiability／Realisability from 0

Theorem 3．6．
The satisfiability problem for RDC with discrete time is decidable．

Theorem 3．9．
The realisability problem for RDC with discrete time is decidable．

$$
\begin{aligned}
& \text { - } \ell=1 \quad \Longleftrightarrow\lceil 1\rceil \wedge \neg(\lceil 1\rceil ;\lceil 1\rceil) \\
& \text { - } \ell=0 \quad \Longleftrightarrow \text { フ「ๆๆ } \\
& \text { - true } \quad \Longleftrightarrow l=0 \vee \neg(l=0) \\
& \text { - } \int P=0 \Longleftrightarrow\lceil\cap P\rceil \vee \ell=0 \\
& \text { - } \left.\int P=1 \Longleftrightarrow\left(\int P=0\right) ;(\Gamma P\rceil \wedge \rho=1\right) ;\left(\int P=0\right) \\
& \text { - } \int P=k+1 \Longleftrightarrow \int P=k ; \int P=1 \\
& \text { - } \int P \geq k \quad \Longleftrightarrow\left(\int P=k\right) \text {; true } \\
& \text { - } \int P>k \quad \Longleftrightarrow \quad \vdots \\
& \cdot \int P \leq k \Longleftrightarrow \\
& \text { - } \int P<k \Longleftrightarrow
\end{aligned}
$$

Sketch: Proof of Theorem 3.6

- give a procedure to construct, given a formula F, a regular language $\mathcal{L}(F)$ such that

$$
\mathcal{I},[0, n] \models F \text { if and only if } w \in \mathcal{L}(F)
$$

where word w describes \mathcal{I} on $[0, n]$
(suitability of the procedure: Lemma 3.4)

- then F is satisfiable in discrete time if and only if $\mathcal{L}(F)$ is not empty (Lemma 3.5)
- Theorem 3.6 follows because
- $\mathcal{L}(F)$ can effectively be constructed,
- the emptyness problem is decidable for regular languages.

Construction of $\mathcal{L}(F)$

－Idea：
－alphabet $\Sigma(F)$ consists of basic conjuncts of the state variables in F ，
－a letter corresponds to an interpretation on an interval of length 1 ，
－a word of length n describes an interpretation on interval $[0, n]$ ．
－Example：Assume F contains exactly state variables X, Y, Z ，then

$$
\begin{aligned}
\Sigma(F)= & \{X \wedge Y \wedge \lambda, X \wedge Y \wedge \neg Z, X \wedge \neg Y \wedge Z, X \wedge \neg Y \wedge \neg Z \\
& \neg X \wedge Y \wedge Z, \neg X \wedge Y \wedge \neg Z, \neg X \wedge \neg Y \wedge Z, \neg X \wedge \neg Y \wedge \neg Z\}
\end{aligned}
$$

Construction of $\mathcal{L}(F)$ more Formally

Definition 3．2．A word $w=a_{1} \ldots a_{n} \in \Sigma(F)^{*}$ with $n \geq 0$ de－ scribes a discrete interpretation \mathcal{I} on $[0, n]$ if and only if

$$
\forall j \in\{1, \ldots, n\} \forall t \in] j-1, j\left[: \mathcal{I} \llbracket a_{j} \rrbracket(t)=1\right.
$$

For $n=0$ we put $w=\varepsilon$ ．
$P=X \wedge$ bY $\Leftrightarrow(X \wedge \text { フィィ } Z)_{\vee}\left(X_{\wedge}\right.$ フケィフZ $)$
－Each state assertion P can be transformed into an equivalent disjunctive normal form $\bigvee_{i=1}^{m} a_{i}$ with $a_{i} \in \Sigma(F)$ ． \qquad $\operatorname{DVF}\left(X_{\wedge} \uparrow Y\right)=$
－Set $\operatorname{DNF}(P):=\left\{a_{1}, \ldots, a_{m}\right\}(\subseteq \Sigma(F))$ ．$\left.\left.\left\{x_{\wedge}\right\urcorner Y_{\wedge} z, x_{\wedge}\right\urcorner y_{\wedge} \neg z\right\}$
－Define $\mathcal{L}(F)$ inductively：

$$
\begin{aligned}
& \mathcal{L}(\lceil P\rceil)=\operatorname{DNF}(P)^{+}, \\
& \mathcal{L}\left(\neg F_{1}\right)=\Sigma(\overline{\mathcal{F}})^{*} \backslash \mathscr{L}\left(\bar{\not}_{1}\right), \\
& \mathcal{L}\left(F_{1} \vee F_{2}\right)=\vartheta\left(F_{1}\right) \cup \mathscr{\ell}\left(F_{2}\right) \text {, (Dde(F) regular } \\
& \mathcal{L}\left(F_{1} ; F_{2}\right)=\mathcal{Y}\left(\xi_{1}\right), \not \mathscr{L}\left(F_{2}\right) .
\end{aligned}
$$

Lemma 3.4

Lemma 3.4. For all RDC formulae F, discrete interpretations \mathcal{I}, $n \geq 0$, and all words $w \in \Sigma(F)^{*}$ which describe \mathcal{I} on $[0, n]$,

$$
\mathcal{I},[0, n] \models F \text { if and only if } w \in \mathcal{L}(F) .
$$

Rorfi stuctoval induction.
Soc $F=[P]$: Let $\omega=a_{1}, \ldots, a_{n}, n \geqslant 0$, describe I on $[0, n]$.
$I,[0,4] F\lceil P] \Leftrightarrow I,[0, n] \vDash\lceil P\rceil$ and $n \geqslant 1$ $\Leftrightarrow n \geqslant 1$ and $\forall 1 \leq j \leq n \cdot I,[j-1, j] \vDash T P]$
describer $\mathbb{C} \Leftrightarrow n \geqslant 1$ and $\forall 16 j b_{n} \bullet I,[j ; 1, j] \vDash T P T_{1}\left[a_{j}\right]$ and $\left.a_{j} \in \operatorname{sot}\right)(P)$ $\Leftrightarrow n \geqslant 1$ and $\forall^{1}<j \leq n * a_{j} \in \operatorname{XNF}(P) \nVdash c l e a r$ $\Leftrightarrow \omega \in \mathbb{D} f(P)^{+}$
$\Leftrightarrow \omega \in \mathbb{e}(\Gamma P 7)$
Steps: - if n

- Fr F
- $\boldsymbol{F}_{\text {. }}{ }^{\mp}$,

Sketch: Proof of Theorem 3.9

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

- kern (L) contains all words of L whose prefixes are again in L.
- If L is regular, then $\operatorname{kern}(L)$ is also regular.
- $\operatorname{kern}(\mathcal{L}(F))$ can effectively be constructed.
- We have

Lemma 3.8. For all RDC formulae F, F is realisable from 0 in discrete time if and only if $\operatorname{kern}(\mathcal{L}(F))$ is infinite.

- Infinity of regular languages is decidable.

Recall: Restricted DC (RDC)

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2} \mid F_{1} ; F_{2}
$$

where P is a state assertion, but with boolean observables only.

From now on: "RDC $+\ell=x, \forall x$ "

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2}\left|F_{1} ; F_{2}\right| \ell=1|\ell=x| \forall x \bullet F_{1}
$$

Undecidability of Satisfiability/Realisability from 0

Theorem 3.10.
The realisability from 0 problem for DC with continuous time is undecidable, not even semi-decidable.

Theorem 3.11.

The satisfiability problem for DC with continuous time is undecidable.

Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from 0 :

- Given a two-counter machine \mathcal{M} with final state $q_{f i n}$,
- construct a DC formula $F(\mathcal{M}):=\operatorname{encoding}(\mathcal{M})$
- such that
\mathcal{M} diverges if and only if the DC formula

$$
F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil
$$

is realisable from 0 .

- If realisability from 0 was (semi-)decidable, divergence of two-counter machines would be (which it isn't).

Recall: Two-counter machines

A two-counter machine is a structure

$$
\mathcal{M}=\left(\mathcal{Q}, q_{0}, q_{f i n}, \operatorname{Prog}\right)
$$

where

- \mathcal{Q} is a finite set of states,
- comprising the initial state q_{0} and the final state $q_{f i n}$
- Prog is the machine program, i.e. a finite set of commands of the form

$$
q: \operatorname{inc}_{1}: q^{\prime} \quad \text { and } \quad q: \operatorname{dec} c_{i}: q^{\prime}, q^{\prime \prime}, \quad i \in\{1,2\} .
$$

- We assume deterministic 2CM: for each $q \in \mathcal{Q}$, at most one command starts in q, and $q_{f i n}$ is the only state where no command starts.

2CM Configurations and Computations

current shate \rightarrow vaches of counters

- a configuration of \mathcal{M} is a triple $K=\left(q, n_{1}, n_{2}\right) \in \mathcal{Q} \times \mathbb{N}_{0} \times \mathbb{N}_{0}$.
- The transition relation " \vdash " on configurations is defined as follows:

Command	Semantics: $K \vdash K^{\prime}$
$q:$ inc $_{1}: q^{\prime}$	$\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}+1, n_{2}\right)$
$q: \operatorname{dec}_{1}: q^{\prime}, q^{\prime \prime}$	$\left(q, 0, n_{2}\right) \vdash\left(q^{\prime}, 0, n_{2}\right)$
	$\left(q, n_{1}+1, n_{2}\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$
$q:$ inc $_{2}: q^{\prime}$	$\left(q, n_{1}, n_{2}\right) \vdash\left(q^{\prime}, n_{1}, n_{2}+1\right)$
$q: \operatorname{dec}_{2}: q^{\prime}, q^{\prime \prime}$	$\left(q, n_{1}, 0\right) \vdash\left(q^{\prime}, n_{1}, 0\right)$
	$\left(q, n_{1}, n_{2}+1\right) \vdash\left(q^{\prime \prime}, n_{1}, n_{2}\right)$

- The (!) computation of \mathcal{M} is a finite sequence of the form

$$
K_{0}=\left(q_{0}, 0,0\right) \vdash K_{1} \vdash K_{2} \vdash \cdots \vdash\left(q_{f i n}, n_{1}, n_{2}\right)
$$

or an infinite sequence of the form

$$
K_{0}=\left(q_{0}, 0,0\right) \vdash K_{1} \vdash K_{2} \vdash \ldots
$$

2CM Example

[^0]
Reducing Divergence to DC realisability: Idea In

Pictures

$$
\begin{aligned}
& 20 \mu \mu \text { dinalyes } \\
& \text { iff. } \\
& \text { exists } \pi: k_{0}+k_{1} t \ldots \\
& \text { if: } \\
& \text { exist } \\
& \text { I } \uparrow \\
& \text { ("I decriber } \pi \text { ") } \\
& \text { and } \\
& \left.I F_{0} F(\mu) \wedge \neg \Delta \Gamma_{q \text { qh }}\right\rceil
\end{aligned}
$$

Reducing Divergence to DC realisability: Idea

- A single configuration K of \mathcal{M} can be encoded in an interval of length 4; being an encoding interval can be characterised by a DC formula.
- An interpretation on 'Time' encodes the computation of \mathcal{M} if
- each interval $[4 n, 4(n+1)], n \in \mathbb{N}_{0}$, encodes a configuration K_{n},
- each two subsequent intervals $[4 n, 4(n+1)]$ and $[4(n+1), 4(n+2)]$, $n \in \mathbb{N}_{0}$, encode configurations $K_{n} \vdash K_{n+1}$ in transition relation.
- Being encoding of the run can be characterised by DC formula $F(\mathcal{M})$.
- Then \mathcal{M} diverges if and only if $F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{f i n}\right\rceil$ is realisable from 0 .

Examples:

- $K=(q, 2,3)$

$$
\binom{\lceil q\rceil}{\wedge=1} ;\left(\begin{array}{c}
\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil X\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\left.\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil ;\left\lceil C_{2}\right\rceil ;\lceil B\rceil\right) \\
\wedge \\
\ell=1
\end{array}\right)
$$

- $K_{0}=\left(q_{0}, 0,0\right)$

$$
\left(\begin{array}{c}
\left\lceil q_{0}\right\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil X\rceil \\
\wedge \\
\ell=1
\end{array}\right) ;\left(\begin{array}{c}
\lceil B\rceil \\
\wedge \\
\ell=1
\end{array}\right)
$$

or, using abbreviations, $\left\lceil q_{0}\right\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\lceil B\rceil^{1}$.

Construction of $F(\mathcal{M})$

In the following, we give DC formulae describing

- the initial configuration,
- the general form of configurations,
- the transitions between configurations,
- the handling of the final state.
$F(\mathcal{M})$ is the conjunction of all these formulae.

Initial and General Configurations

$$
\text { init }: \Longleftrightarrow\left(\ell \geq 4 \Longrightarrow\left\lceil q_{0}\right\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\lceil B\rceil^{1} ; \text { true }\right)
$$

$$
\begin{aligned}
\text { keep }: \Longleftrightarrow \square & \left(\lceil Q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4\right. \\
& \left.\Longrightarrow \ell=4 ;\lceil Q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1}\right)
\end{aligned}
$$

where $Q:=\neg\left(X \vee C_{1} \vee C_{2} \vee B\right)$.

$$
\begin{aligned}
\operatorname{copy}\left(F,\left\{P_{1}\right.\right. & \left.\left., \ldots, P_{n}\right\}\right): \Longleftrightarrow \\
\forall c, d & \bullet \square\left((F \wedge \ell=c) ;\left(\left\lceil P_{1} \vee \cdots \vee P_{n}\right\rceil \wedge \ell=d\right) ;\left\lceil P_{1}\right\rceil ; \ell=4\right. \\
& \Longrightarrow \ell=c+d+4 ;\left\lceil P_{1}\right\rceil \\
\ldots & \\
\forall c, d & \bullet\left((F \wedge \ell=c) ;\left(\left\lceil P_{1} \vee \cdots \vee P_{n}\right\rceil \wedge \ell=d\right) ;\left\lceil P_{n}\right\rceil ; \ell=4\right. \\
& \Longrightarrow \ell=c+d+4 ;\left\lceil P_{n}\right\rceil
\end{aligned}
$$

$q: i n c_{1}: q^{\prime}$ (Increment)

(i) Change state
$\square\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4 \Longrightarrow \ell=4 ;\left\lceil q^{\prime}\right\rceil^{1} ;\right.$ true $)$
(ii) Increment counter

$$
\begin{gathered}
\forall d \bullet \square\left(\lceil q\rceil^{1} ;\lceil B\rceil^{d} ;\left(\ell=0 \vee\left\lceil C_{1}\right\rceil ;\lceil\neg X\rceil\right) ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4\right. \\
\Longrightarrow \quad \Longrightarrow \quad 4 ;\left\lceil q^{\prime}\right\rceil^{1} ;\left(\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\lceil B\rceil \wedge \ell=d\right) ; \text { true }
\end{gathered}
$$

$q: i n c_{1}: q^{\prime}$ (Increment)

(i) Keep rest of first counter

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil ;\left\lceil C_{1}\right\rceil,\left\{B, C_{1}\right\}\right)
$$

(ii) Leave second counter unchanged

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil ;\lceil X\rceil^{1},\left\{B, C_{2}\right\}\right)
$$

$q: \operatorname{dec}_{1}: q^{\prime}, q^{\prime \prime}$ (Decrement)

(i) If zero

$$
\square\left(\lceil q\rceil^{1} ;\lceil B\rceil^{1} ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=4 \Longrightarrow \ell=4 ;\left\lceil q^{\prime}\right\rceil^{1} ;\lceil B\rceil^{1} ; \text { true }\right)
$$

(ii) Decrement counter

$$
\begin{gathered}
\forall d \bullet \square\left(\lceil q\rceil^{1} ;\left(\lceil B\rceil ;\left\lceil C_{1}\right\rceil \wedge \ell=d\right) ;\lceil B\rceil ;\left\lceil B \vee C_{1}\right\rceil ;\lceil X\rceil^{1} ;\left\lceil B \vee C_{2}\right\rceil^{1} ; \ell=\right. \\
\left.\Longrightarrow \ell=4 ;\left\lceil q^{\prime \prime}\right\rceil^{1} ;\lceil B\rceil^{d} ; \text { true }\right)
\end{gathered}
$$

(iii) Keep rest of first counter

$$
\operatorname{copy}\left(\lceil q\rceil^{1} ;\lceil B\rceil ;\left\lceil C_{1}\right\rceil ;\left\lceil B_{1}\right\rceil,\left\{B, C_{1}\right\}\right)
$$

Final State

$$
\operatorname{copy}\left(\left\lceil q_{f i n}\right\rceil^{1} ;\left\lceil B \vee C_{1}\right\rceil^{1} ;\lceil X\rceil ;\left\lceil B \vee C_{2}\right\rceil^{1},\left\{q_{f n}, B, X, C_{1}, C_{2}\right\}\right)
$$

Satisfiability

- Following [Chaochen and Hansen, 2004] we can observe that
\mathcal{M} halts if and only if the DC formula $F(\mathcal{M}) \wedge \diamond\left\lceil q_{f i n}\right\rceil$ is satisfiable. This yields

Theorem 3.11. The satisfiability problem for DC with continuous time is undecidable.
(It is semi-decidable.)

- Furthermore, by taking the contraposition, we see

$$
\begin{array}{lll}
\mathcal{M} \text { diverges } & \text { if and only if } \mathcal{M} \text { does not halt } \\
& \text { if and only if } \quad F(\mathcal{M}) \wedge \neg \diamond\left\lceil q_{\text {fin }}\right\rceil \text { is not satisfiable. }
\end{array}
$$

- Thus whether a DC formula is not satisfiable is not decidable, not even semi-decidable.

Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):

Validity

- By Remark 2.13, F is valid iff $\neg F$ is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time is undecidable, not even semi-decidable.

- This provides us with an alternative proof of Theorem 2.23 ("there is no sound and complete proof system for DC"):
- Suppose there were such a calculus \mathcal{C}.
- By Lemma 2.22 it is semi-decidable whether a given DC formula F is a theorem in \mathcal{C}.
- By the soundness and completeness of \mathcal{C},
F is a theorem in \mathcal{C} if and only if F is valid.
- Thus it is semi-decidable whether F is valid. Contradiction.

Discussion

- Note: the DC fragment defined by the following grammar is sufficient for the reduction

$$
F::=\lceil P\rceil\left|\neg F_{1}\right| F_{1} \vee F_{2}\left|F_{1} ; F_{2}\right| \ell=1|\ell=x| \forall x \bullet F_{1}
$$

P a state assertion, x a global variable.

- Formulae used in the reduction are abbreviations:

$$
\begin{aligned}
\ell=4 & \Longleftrightarrow \ell=1 ; \ell=1 ; \ell=1 ; \ell=1 \\
\ell \geq 4 & \Longleftrightarrow \ell=4 ; \text { true } \\
\ell=x+y+4 & \Longleftrightarrow \ell=x ; \ell=y ; \ell=4
\end{aligned}
$$

- Length 1 is not necessary - we can use $\ell=z$ instead, with fresh z.
- This is RDC augmented by " $\ell=x$ " and " $\forall x$ ", which we denote by RDC $+\ell=x, \forall x$.

References

[Chaochen and Hansen, 2004] Chaochen, Z. and Hansen, M. R. (2004). Duration Calculus: A Formal Approach to Real-Time Systems. Monographs in Theoretical Computer Science. Springer-Verlag. An EATCS Series.
[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

[^0]: 21/36

