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Real-Time Systems

Lecture 10: DC Properties IIb
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Last Lecture:

• Satisfiability and realisability from 0 is decidable for RDC in discrete time

• Undecidable problems of DC in continuous time

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Facts: (un)decidability properties of DC in discrete/continuous time.

• What’s the idea of the considered (un)decidability proofs?

• Content:

• Undecidable problems of DC in continuous time cont’d



(Variants of) RDC in Continuous Time
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Sketch: Proof of Theorem 3.10
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Reduce divergence of two-counter machines to realisability from 0:

• Given a two-counter machine M with final state qfin ,

• construct a DC formula F (M) := encoding(M)

• such that

M diverges if and only if the DC formula

F (M) ∧ ¬♦⌈qfin⌉

is realisable from 0.

• If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn’t).



Reducing Divergence to DC realisability: Idea
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• A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

• An interpretation on ‘Time’ encodes the computation of M if

• each interval [4n, 4(n+ 1)], n ∈ N0, encodes a configuration Kn,

• each two subsequent intervals [4n, 4(n+ 1)] and [4(n+ 1), 4(n+ 2)],
n ∈ N0, encode configurations Kn ⊢ Kn+1 in transition relation.

• Being encoding of the run can be characterised by DC formula F (M).

• Then M diverges if and only if F (M) ∧ ¬♦⌈qfin⌉ is realisable from 0.

Construction of F (M)
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In the following, we give DC formulae describing

• the initial configuration,

• the general form of configurations,

• the transitions between configurations,

• the handling of the final state.

F (M) is the conjunction of all these formulae.



Initial and General Configurations
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init :⇐⇒ (ℓ ≥ 4 =⇒ ⌈q0⌉
1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B⌉1 ; true)

keep :⇐⇒ �(⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈Q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1)

where Q := ¬(X ∨ C1 ∨ C2 ∨B).

Auxiliary Formula Pattern copy
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copy(F, {P1, . . . , Pn}) :⇐⇒

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈P1⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈P1⌉

. . .

∀ c, d •�((F ∧ ℓ = c) ; (⌈P1 ∨ · · · ∨ Pn⌉ ∧ ℓ = d) ; ⌈Pn⌉ ; ℓ = 4

=⇒ ℓ = c+ d+ 4 ; ⌈Pn⌉



q : inc1 : q
′ (Increment)
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(i) Change state

�(⌈q⌉1 ; ⌈B ∨ C1⌉
1 ; ⌈X⌉1 ; ⌈B ∨ C2⌉

1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; true)

(ii) Increment counter

∀ d •�(⌈q⌉1 ; ⌈B⌉d ; (ℓ = 0 ∨ ⌈C1⌉ ; ⌈¬X⌉) ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ = 4

=⇒ ℓ = 4 ; ⌈q′⌉1 ; (⌈B⌉ ; ⌈C1⌉ ; ⌈B⌉ ∧ ℓ = d) ; true

q : inc1 : q
′ (Increment)
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(i) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈C1⌉, {B,C1})

(ii) Leave second counter unchanged

copy(⌈q⌉1 ; ⌈B ∨ C1⌉ ; ⌈X⌉1, {B,C2})



q : dec1 : q
′, q′′ (Decrement)
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(i) If zero

�(⌈q⌉1 ; ⌈B⌉1 ; ⌈X⌉1 ; ⌈B ∨C2⌉
1 ; ℓ = 4 =⇒ ℓ = 4 ; ⌈q′⌉1 ; ⌈B⌉1 ; true)

(ii) Decrement counter

∀ d •�(⌈q⌉1 ; (⌈B⌉ ; ⌈C1⌉ ∧ ℓ = d) ; ⌈B⌉ ; ⌈B ∨ C1⌉ ; ⌈X⌉1 ; ⌈B ∨ C2⌉
1 ; ℓ =

=⇒ ℓ = 4 ; ⌈q′′⌉1 ; ⌈B⌉d ; true)

(iii) Keep rest of first counter

copy(⌈q⌉1 ; ⌈B⌉ ; ⌈C1⌉ ; ⌈B1⌉, {B,C1})

Final State
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copy(⌈qfin⌉
1 ; ⌈B ∨ C1⌉

1 ; ⌈X⌉ ; ⌈B ∨ C2⌉
1, {qfin , B,X,C1, C2})



Satisfiability
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• Following [Chaochen and Hansen, 2004] we can observe that

M halts if and only if the DC formula F (M) ∧ ♦⌈qfin⌉ is satisfiable.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

• Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F (M) ∧ ¬♦⌈qfin⌉ is not satisfiable.

• Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable.

Validity
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• By Remark 2.13, F is valid iff ¬F is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
is undecidable, not even semi-decidable.



Discussion
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• Note: the DC fragment defined by the following grammar is sufficient for
the reduction

F ::= ⌈P ⌉ | ¬F1 | F1 ∨ F2 | F1 ; F2 | ℓ = 1 | ℓ = x | ∀x • F1,

P a state assertion, x a global variable.

• Formulae used in the reduction are abbreviations:

ℓ = 4 ⇐⇒ ℓ = 1 ; ℓ = 1 ; ℓ = 1 ; ℓ = 1

ℓ ≥ 4 ⇐⇒ ℓ = 4 ; true

ℓ = x+ y + 4 ⇐⇒ ℓ = x ; ℓ = y ; ℓ = 4

• Length 1 is not necessary — we can use ℓ = z instead, with fresh z.

• This is RDC augmented by “ℓ = x” and “∀x”,
which we denote by RDC + ℓ = x, ∀x.
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