Real-Time Systems

Lecture 11: Timed Automata

2014-07-01

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• DC (un)decidability

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - what's notable about TA syntax? What's simple clock constraint?
 - what's a configuration of a TA? When are two in transition relation?
 - what's the difference between guard and invariant? Why have both?
 - what's a computation path? A run? Zeno behaviour?

• Content:

- Timed automata syntax
- TA operational semantics

Introduction

- First-order Logic
- Duration Calculus (DC)
- Semantical Correctness
 Proofs with DC
- DC Decidability
- DC Implementables
- PLC-Automata

- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- Extended Timed Automata
- Undecidability Results

$$obs: \mathsf{Time} \to \mathscr{D}(obs)$$

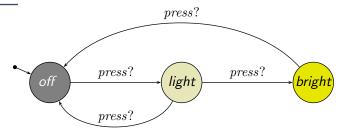
$$\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_1 \dots$$

- Automatic Verification...
- ...whether TA satisfies DC formula, observer-based

3/32

Example: Off/Light/Bright

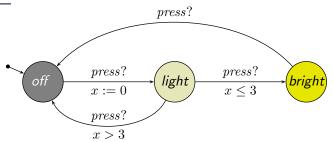
Example



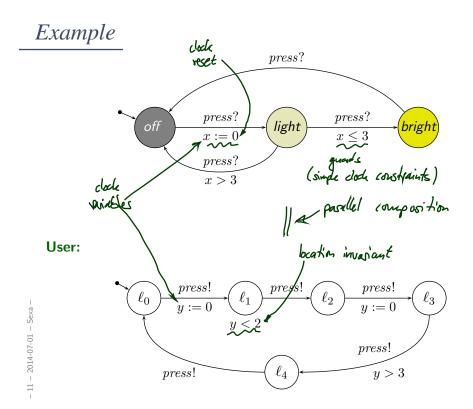
- 11 - 2014-07-01 - Sexa -

6/32

Example

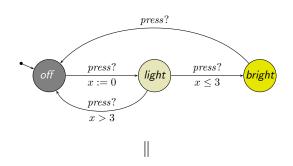


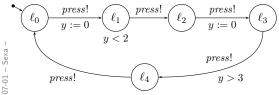
- 11 - 2014-07-01 - Sexa -



6/32

Example Cont'd





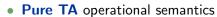
Problems:

- Deadlock freedom [Behrmann et al., 2004]
- Location Reachability
 ("Is this user able to reach
 'bright'?")
- Constraint Reachability ("Can the controller's clock go past 5?")

- 11 - 2014-07-01 - Sexa -

Plan

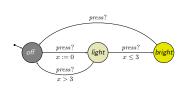
- Pure TA syntax
 - channels, actions
 - (simple) clock constraints
 - Def. TA

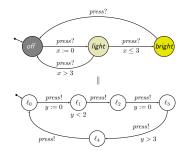


- clock valuation, time shift, modification
- operational semantics
- discussion
- Transition sequence, computation path, run
- Network of TA
 - parallel composition (syntactical)
 - restriction
 - network of TA semantics
- Uppaal Demo

- 11 - 2014-07-01 - Sexa

- Region abstraction; zones
- Extended TA; Logic of Uppaal





8/32

Pure TA Syntax

To define timed automata formally, we need the following sets of symbols:

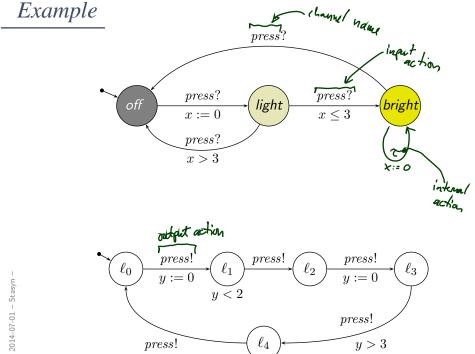
- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel $a \in \mathsf{Chan}$, two visible actions: a? and a! denote **input** and **output** on the **channel** (a?, a! \notin Chan).
- $\tau \notin \text{Chan represents an internal action}$, not visible from outside.
- $(\alpha, \beta \in)$ $Act := \{a? \mid a \in \mathsf{Chan}\} \cup \{a! \mid a \in \mathsf{Chan}\} \cup \{\tau\}$ is the set of actions.
- An alphabet B is a set of channels, i.e. $B \subseteq \mathsf{Chan}$.
- For each alphabet B, we define the corresponding action set

$$B_{?!} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.$$

• Note: $\mathsf{Chan}_{?!} = Act$.

11 - 2014-07-01 - Stasyn

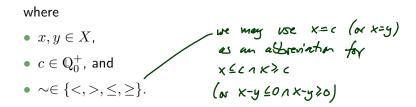
10/32



Simple Clock Constraints

- Let $(x, y \in) X$ be a set of clock variables (or clocks).
- The set $(\varphi \in) \Phi(X)$ of (simple) clock constraints (over X) is defined by the following grammar:

$$\varphi ::= x \sim c \mid x - y \sim c \mid \varphi_1 \wedge \varphi_2$$

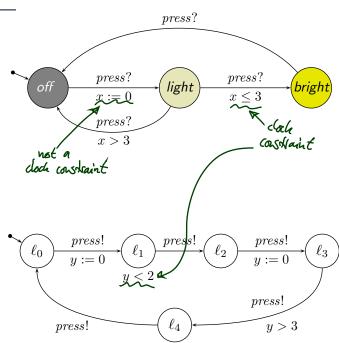


ullet Clock constraints of the form $x-y\sim c$ are called **difference constraints**.

12/32

Example

– 11 – 2014-07-01 – Stasyn –



-11 - 2014-07-01 - Stasyn

Definition 4.3. [Timed automaton] A (pure) **timed automaton** A is a structure

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

where

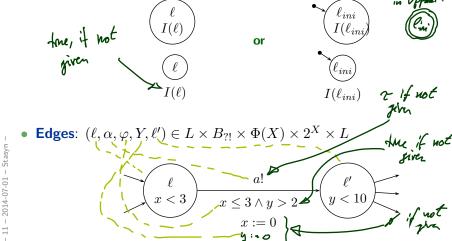
- $(\ell \in)$ L is a finite set of **locations** (or **control states**),
- $B \subseteq \mathsf{Chan}$,
- X is a finite set of clocks,
- povered of X
- $I:L o \Phi(X)$ assigns to each location a clock constraint, its invariant,
- $E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L$ a finite set of **directed edges**. Edges $(\ell, \alpha, \varphi, Y, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a set Y of clocks that will be reset.
- ℓ_{ini} is the initial location.

14/32

Graphical Representation of Timed Automata

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

• Locations (control states) and their invariants:



Clock Valuations

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

$$\nu:X\to \mathsf{Time}$$

assigning each clock $x \in X$ the current time $\nu(x)$.

• Let φ be a clock constraint.

The satisfaction relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:

- $\nu \models x \approx c$ iff $\nu(x) \stackrel{\wedge}{\sim} c$ $\nu \models x \rightarrow y \sim c$ iff $\nu(x) \stackrel{\wedge}{\sim} \nu(y) \stackrel{\wedge}{\sim} c$ $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$

ullet Let X be a set of clocks. A valuation u of clocks in X is a mapping

$$\nu:X o \mathsf{Time}$$

assigning each clock $x \in X$ the current time $\nu(x)$.

• Let φ be a clock constraint.

The **satisfaction** relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:

- $\nu \models x \sim c$ iff $\nu(x) \sim c$
- $\nu \models x y \sim c$ iff $\nu(x) \nu(y) \sim c$
- $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$
- Two clock constraints φ_1 and φ_2 are called (logically) equivalent if and only if for all clock valuations ν , we have

$$\nu \models \varphi_1$$
 if and only if $\nu \models \varphi_2$.

In that case we write $\models \varphi_1 \iff \varphi_2$.

17/32

Operations on Clock Valuations

Let ν be a valuation of clocks in X and $t \in \mathsf{Time}$.

• Time Shift

We write $\nu+t$ to denote the clock valuation (for X) with

$$(\underbrace{\nu+t})(x) = \nu(x) + t.$$

for all $x \in X$,

Modification

Let $Y \subseteq X$ be a set of clocks.

We write $\nu[Y:=t]$ to denote the clock valuation with

$$(\nu[Y:=t])(x) = \begin{cases} t & \text{, if } x \in Y \\ \nu(x) & \text{, otherwise} \end{cases}$$

Special case **reset**: t = 0.

Definition 4.4. The operational semantics of a timed automaton

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

is defined by the (labelled) transition system

$$\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \stackrel{\lambda}{\rightarrow} | \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

where

- $Conf(A) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \ \nu \models I(\ell) \}$
- Time \cup $B_{?!}$ are the transition labels,
- there are delay transition relations

$$\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in \mathsf{Time}$$

and action transition relations

ransition relations
$$\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in B_{?!}. \qquad (\rightarrow \text{later slides})$$

• $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$ with $\nu_0(x) = 0$ for all $x \in X$ is the set of **initial configurations**.

19/32

Operational Semantics of TA Cont'd

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

$$\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \stackrel{\lambda}{\rightarrow} | \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

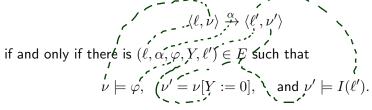
• Time or delay transition:

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \underline{\nu + t} \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$.

"Some time $t \in \mathsf{Time}$ elapses respecting invariants, location unchanged."

Action or discrete transition:



"An action occurs, location may change, some clocks may be reset, time does not advance."

ullet A transition sequence of ${\cal A}$ is any finite or infinite sequence of the form

$$\underbrace{\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots}_{}$$

with

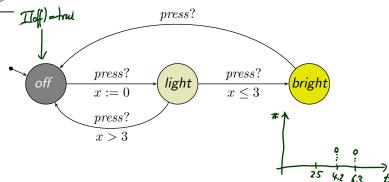
- 11 - 2014-07-01 - Stasem -

- $\langle \ell_0, \nu_0 \rangle \in C_{ini}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$
- A configuration $\langle \ell, \nu \rangle$ is called **reachable** (in \mathcal{A}) if and only if there is a transition sequence of the form

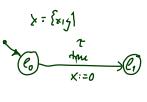
$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

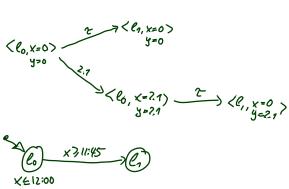
• A **location** ℓ is called **reachable** if and only if **any** configuration $\langle \ell, \nu \rangle$ is reachable, i.e. there exists a valuation ν such that $\langle \ell, \nu \rangle$ is reachable.

21/32



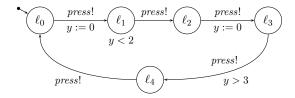
$$\begin{split} \langle \underbrace{\it{off}}, \underbrace{x=0} \rangle & \xrightarrow{2.5} \langle \it{off}, x=2.5 \rangle \xrightarrow{1.7} \langle \it{off}, x=4.2 \rangle \\ & \xrightarrow{press?} \langle \it{light}, x=0 \rangle \xrightarrow{2.1} \langle \it{light}, x=2.1 \rangle \\ & \xrightarrow{press?} \langle \it{bright}, x=2.1 \rangle \xrightarrow{10} \langle \it{bright}, x=12.1 \rangle \\ & \xrightarrow{press?} \langle \it{off}, x=12.1 \rangle \\ & \xrightarrow{press?} \langle \it{light}, x=0 \rangle \xrightarrow{0} \langle \it{light}, x=0 \rangle \end{split}$$





Discussion: Set of Configurations

Recall the user model for our light controller:



• "Good" configurations:

$$\langle \ell_1, y = 0 \rangle, \langle \ell_1, y = 1.9 \rangle, \quad \langle \ell_2, y = 1000 \rangle,$$

 $\langle \ell_2, y = 0.5 \rangle, \quad \langle \ell_3, y = 27 \rangle$

• "Bad" configurations:

$$\langle \ell_1, y = 2.0 \rangle, \langle \ell_1, y = 2.5 \rangle$$

- 11 - 2014-07-01 - Stasem -

Two Approaches to Exclude "Bad" Configurations

- The approach taken for TA:
 - Rule out bad configurations in the step from $\mathcal A$ to $\mathcal T(\mathcal A)$. "Bad" configurations are not even configurations!
 - Recall Definition 4.4:
 - $Conf(A) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}$
 - $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$
 - Note: Being in Conf(A) doesn't mean to be reachable.
- The approach not taken for TA:
 - \bullet consider every $\langle \ell, \nu \rangle$ to be a configuration, i.e. have

$$Conf(\mathcal{A}) = \{\langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time} / \mu / \mu / \mu / \mu / \mu \} \}$$

• "bad" configurations not in transition relation with others, i.e. have, e.g.,

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$ and $\nu + t' \models I(\ell')$.

24/32

Computation Path, Run

- 11 - 2014-07-01 - Stasem -

Computation Paths

- $\langle \ell, \nu \rangle, t$ is called **time-stamped configuration**
- time-stamped delay transition: $\langle \ell, \nu \rangle, t \xrightarrow{t'} \langle \ell, \nu + t' \rangle, t + t'$ iff $t' \in \mathsf{Time}$ and $\langle \ell, \nu \rangle \xrightarrow{t'} \langle \ell, \nu + t' \rangle$.
- time-stamped action transition: $\langle \ell, \nu \rangle, t \xrightarrow{\alpha} \langle \ell', \nu' \rangle, t$ iff $\alpha \in B_{?!}$ and $\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$.
- A sequence of time-stamped configurations

$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

is called **computation path** (or path) of \mathcal{A} starting in $\langle \ell_0, \nu_0 \rangle, t_0$ if and only if it is either infinite or maximally finite.

• A computation path (or path) is a computation path starting at $\langle \ell_0, \nu_0 \rangle, 0$ where $\langle \ell_0, \nu_0 \rangle \in C_{ini}$.

26/32

Timelocks and Zeno Behaviour

• Timelock:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{2} \langle \ell, x = 2 \rangle, 2$$
$$\langle \ell', x = 0 \rangle, 0 \xrightarrow{3} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \dots$$

Zeno behaviour:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{1/2} \langle \ell, x = 1/2 \rangle, \frac{1}{2} \xrightarrow{1/4} \langle \ell, x = 3/4 \rangle, \frac{3}{4} \dots$$

$$\xrightarrow{1/2^n} \langle \ell, x = (2^n - 1)/2^n \rangle, \frac{2^n - 1}{2^n} \dots$$

Real-Time Sequence

Definition 4.9. An infinite sequence

$$t_0, t_1, t_2, \dots$$

of values $t_i \in \text{Time for } i \in \mathbb{N}_0$ is called **real-time sequence** if and only if it has the following properties:

• Monotonicity:

$$\forall i \in \mathbb{N}_0 : t_i \le t_{i+1}$$

• Non-Zeno behaviour (or unboundedness or progress):

$$\forall t \in \mathsf{Time} \ \exists \ i \in \mathbb{N}_0 : t < t_i$$

28/32

Run

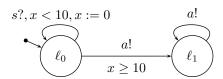
Definition 4.10. A **run** of \mathcal{A} **starting** in the time-stamped configuration $\langle \ell_0, \nu_0 \rangle, t_0$ is an infinite computation path of \mathcal{A}

$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

where $(t_i)_{i\in\mathbb{N}_0}$ is a real-time sequence.

If $\langle \ell_0, \nu_0 \rangle \in C_{ini}$ and $t_0 = 0$, then we call ξ a **run** of \mathcal{A} .

Example:



11 - 2014-07-01 - Starin -

30/32

References

[Behrmann et al., 2004] Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

- 11 - 2014-07-01 - main -