11 - 2014-07-01 - main -

Real-Time Systems

Lecture 11: Timed Automata

2014-07-01

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

1 - 2014-07-01 - Sprelim -

Contents & Goals

Last Lecture:

DC (un)decidability

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - what's notable about TA syntax? What's simple clock constraint?
 - what's a configuration of a TA? When are two in transition relation?
 - what's the difference between guard and invariant? Why have both?
 - what's a computation path? A run? Zeno behaviour?

Content:

- Timed automata syntax
- TA operational semantics

Content

Introduction

- First-order Logic
- Duration Calculus (DC)
- Semantical Correctness
 Proofs with DC
- DC Decidability
- DC Implementables
- PLC-Automata

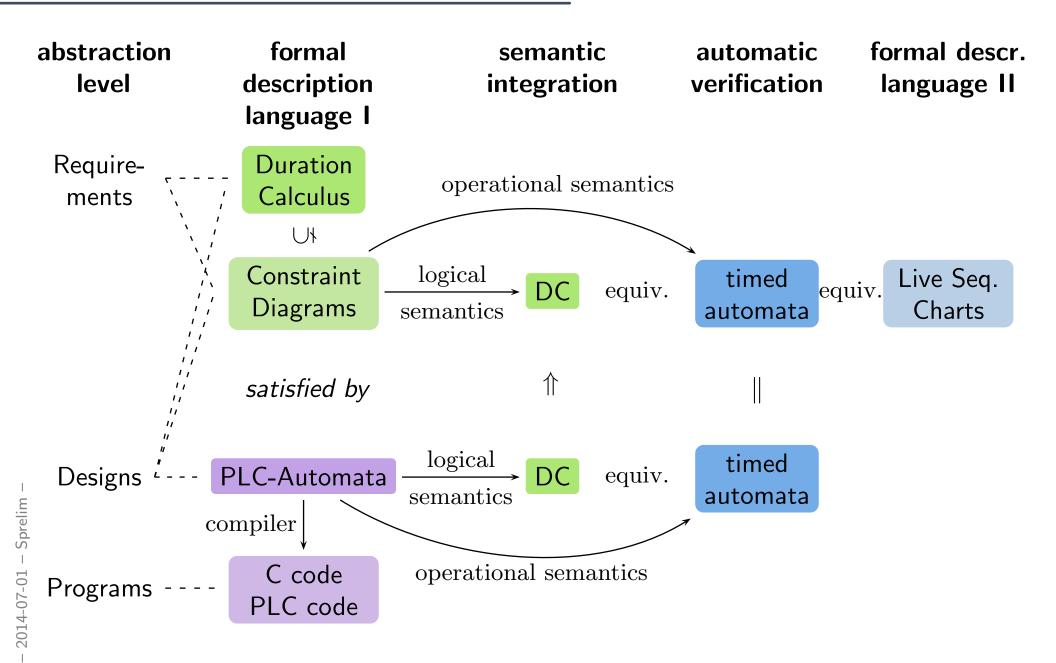
obs: Time $\rightarrow \mathscr{D}(obs)$

- Timed Automata (TA), Uppaal
- Networks of Timed Automata
- Region/Zone-Abstraction
- Extended Timed Automata
- Undecidability Results

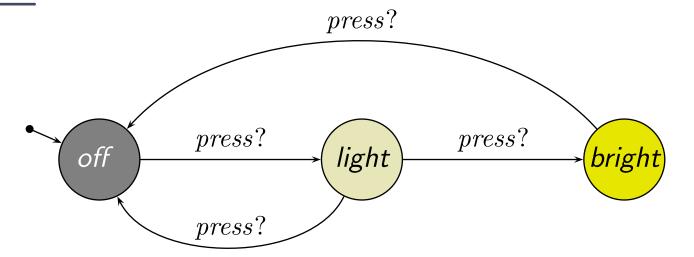
$$\langle obs_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_0} \langle obs_1, \nu_1 \rangle, t_1 \dots$$

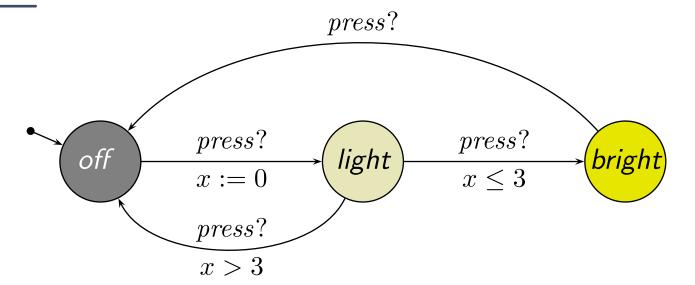
- Automatic Verification
- ...whether TA satisfies DC formula, observer-based

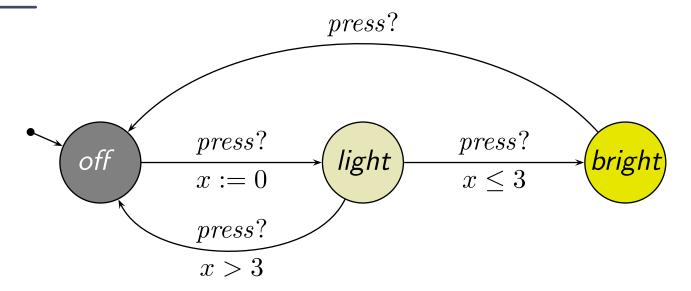
Recall: Tying It All Together



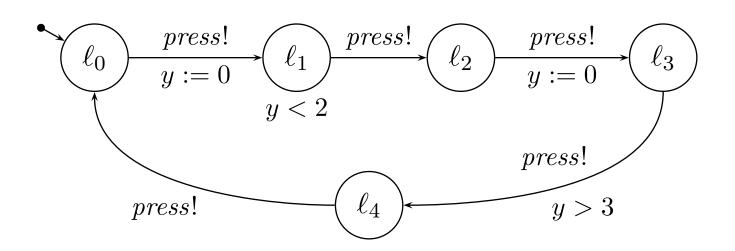
Example: Off/Light/Bright



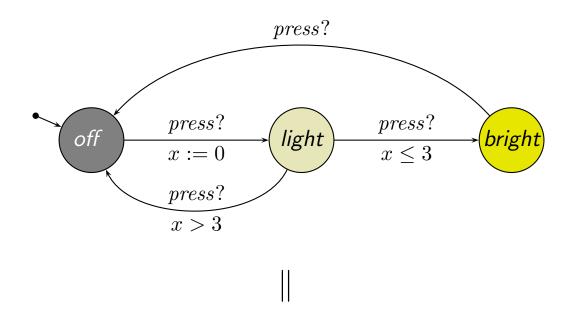


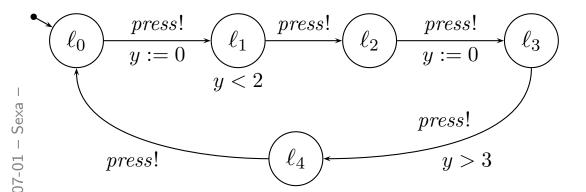


User:



Example Cont'd



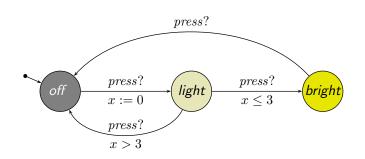


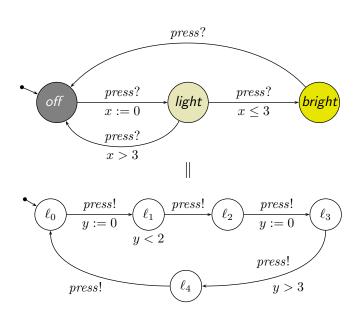
Problems:

- Deadlock freedom
 [Behrmann et al., 2004]
- Location Reachability
 ("Is this user able to reach
 'bright'?")
- Constraint Reachability ("Can the controller's clock go past 5?")

11 - 2014-07-01 - Sexa

- Pure TA syntax
 - channels, actions
 - (simple) clock constraints
 - Def. TA
- Pure TA operational semantics
 - clock valuation, time shift, modification
 - operational semantics
 - discussion
- Transition sequence, computation path, run
- Network of TA
 - parallel composition (syntactical)
 - restriction
 - network of TA semantics
- Uppaal Demo
- Region abstraction; zones
- Extended TA; Logic of Uppaal





Pure TA Syntax

1 - 2014-07-01 - Stasvn -

Channel Names and Actions

To define timed automata formally, we need the following sets of symbols:

• A set $(a, b \in)$ Chan of channel names or channels.

11 - 2014-07-01 - Stasyn -

Channel Names and Actions

To define timed automata formally, we need the following sets of symbols:

- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel $a \in \mathsf{Chan}$, two **visible actions**: a? and a! denote **input** and **output** on the **channel** (a?, a! $\notin \mathsf{Chan}$).
- $\tau \notin \text{Chan represents an internal action}$, not visible from outside.
- $(\alpha, \beta \in)$ $Act := \{a? \mid a \in \mathsf{Chan}\} \cup \{a! \mid a \in \mathsf{Chan}\} \cup \{\tau\}$ is the set of **actions**.

1 - 2014-07-01 - Stasyn -

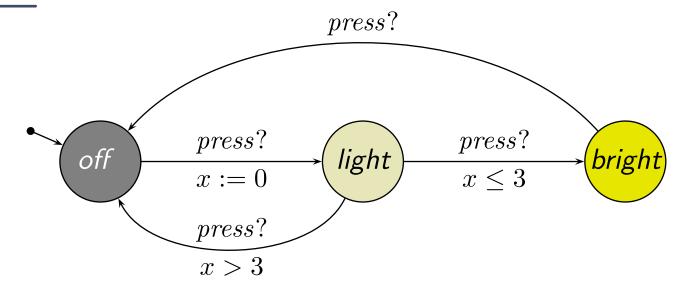
Channel Names and Actions

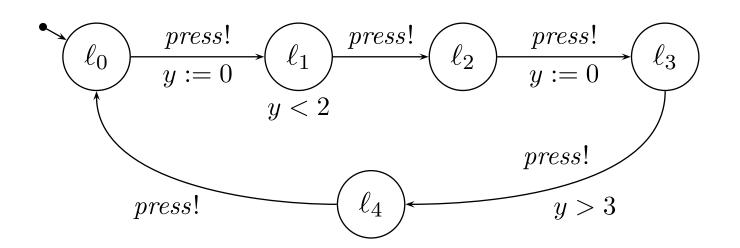
To define timed automata formally, we need the following sets of symbols:

- A set $(a, b \in)$ Chan of channel names or channels.
- For each channel $a \in Chan$, two visible actions: a? and a! denote input and output on the channel $(a?, a! \notin Chan)$.
- $\tau \notin \text{Chan represents an internal action}$, not visible from outside.
- $(\alpha, \beta \in)$ $Act := \{a? \mid a \in \mathsf{Chan}\} \cup \{a! \mid a \in \mathsf{Chan}\} \cup \{\tau\}$ is the set of **actions**.
- An alphabet B is a set of channels, i.e. $B \subseteq \mathsf{Chan}$.
- For each alphabet B, we define the corresponding action set

$$B_{?!} := \{a? \mid a \in B\} \cup \{a! \mid a \in B\} \cup \{\tau\}.$$

• Note: Chan $_{?!}=Act$.





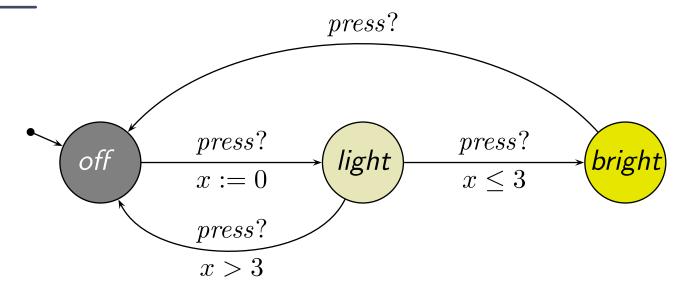
Simple Clock Constraints

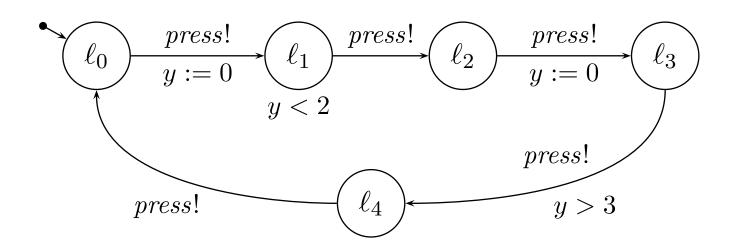
- Let $(x, y \in) X$ be a set of clock variables (or clocks).
- The set $(\varphi \in) \Phi(X)$ of (simple) clock constraints (over X) is defined by the following grammar:

$$\varphi ::= x \sim c \mid x - y \sim c \mid \varphi_1 \wedge \varphi_2$$

where

- $x, y \in X$,
- $c \in \mathbb{Q}_0^+$, and
- $\sim \in \{<,>,\leq,\geq\}$.
- Clock constraints of the form $x-y\sim c$ are called **difference constraints**.





Definition 4.3. [Timed automaton]

A (pure) **timed automaton** A is a structure

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

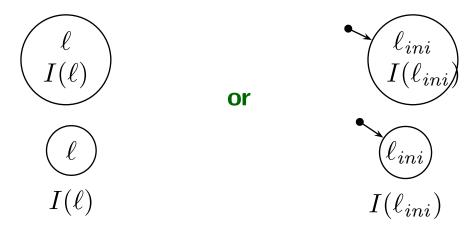
where

- $(\ell \in)$ L is a finite set of **locations** (or **control states**),
- $B \subseteq \mathsf{Chan}$,
- X is a finite set of clocks,
- $I:L \to \Phi(X)$ assigns to each location a clock constraint, its **invariant**,
- $E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L$ a finite set of **directed edges**.
 - Edges $(\ell, \alpha, \varphi, Y, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a set Y of clocks that will be reset.
- ℓ_{ini} is the initial location.

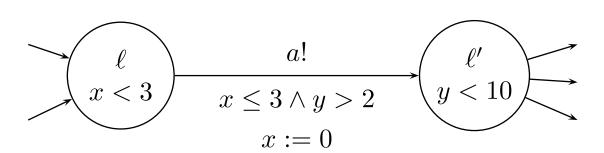
Graphical Representation of Timed Automata

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

Locations (control states) and their invariants:



• Edges: $(\ell, \alpha, \varphi, Y, \ell') \in L \times B_{?!} \times \Phi(X) \times 2^X \times L$



Pure TA Operational Semantics

Clock Valuations

ullet Let X be a set of clocks. A valuation u of clocks in X is a mapping

$$\nu:X\to\mathsf{Time}$$

assigning each clock $x \in X$ the current time $\nu(x)$.

Clock Valuations

ullet Let X be a set of clocks. A valuation u of clocks in X is a mapping

$$\nu:X\to\mathsf{Time}$$

assigning each clock $x \in X$ the current time $\nu(x)$.

- Let φ be a clock constraint. The **satisfaction** relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:
 - $\nu \models x \sim c$ iff $\nu(x) \sim c$
 - $\nu \models x y \sim c$ iff $\nu(x) \nu(y) \sim c$
 - $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$

Clock Valuations

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

$$\nu:X\to\mathsf{Time}$$

assigning each clock $x \in X$ the current time $\nu(x)$.

- Let φ be a clock constraint. The **satisfaction** relation between clock valuations ν and clock constraints φ , denoted by $\nu \models \varphi$, is defined inductively:
 - $\nu \models x \sim c$ iff $\nu(x) \sim c$
 - $\nu \models x y \sim c$ iff $\nu(x) \nu(y) \sim c$
 - $\nu \models \varphi_1 \land \varphi_2$ iff $\nu \models \varphi_1$ and $\nu \models \varphi_2$
- Two clock constraints φ_1 and φ_2 are called (**logically**) equivalent if and only if for all clock valuations ν , we have

$$\nu \models \varphi_1$$
 if and only if $\nu \models \varphi_2$.

In that case we write $\models \varphi_1 \iff \varphi_2$.

11 - 2014-07-01 - Stasem

Operations on Clock Valuations

Let ν be a valuation of clocks in X and $t \in \mathsf{Time}$.

Time Shift

We write $\nu + t$ to denote the clock valuation (for X) with

$$(\nu + t)(x) = \nu(x) + t.$$

for all $x \in X$,

.1 - 2014-07-01 - Stasem

Operations on Clock Valuations

Let ν be a valuation of clocks in X and $t \in \mathsf{Time}$.

Time Shift

We write $\nu + t$ to denote the clock valuation (for X) with

$$(\nu + t)(x) = \nu(x) + t.$$

for all $x \in X$,

Modification

Let $Y \subseteq X$ be a set of clocks.

We write $\nu[Y:=t]$ to denote the clock valuation with

$$(\nu[Y:=t])(x) = \begin{cases} t & \text{, if } x \in Y \\ \nu(x) & \text{, otherwise} \end{cases}$$

Special case **reset**: t = 0.

Operational Semantics of TA

Definition 4.4. The **operational semantics** of a timed automaton

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

is defined by the (labelled) transition system

$$\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \xrightarrow{\lambda} | \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

where

- $Conf(\mathcal{A}) = \{ \langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \ \nu \models I(\ell) \}$
- Time $\cup B_{?!}$ are the transition labels,
- there are delay transition relations

$$\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in \mathsf{Time}$$

and action transition relations

$$\langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle, \lambda \in B_{?!}.$$
 (\rightarrow later slides)

• $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$ with $\nu_0(x) = 0$ for all $x \in X$ is the set of **initial configurations**.

11 - 2014-07-01 - Stasem

Operational Semantics of TA Cont'd

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$

$$\mathcal{T}(\mathcal{A}) = (\mathit{Conf}(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \stackrel{\lambda}{\rightarrow} | \ \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$$

• Time or delay transition:

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall t' \in [0, t] : \nu + t' \models I(\ell)$.

"Some time $t \in T$ ime elapses respecting invariants, location unchanged."

• Action or discrete transition:

$$\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$$

if and only if there is $(\ell, \alpha, \varphi, Y, \ell') \in E$ such that

$$\nu \models \varphi, \quad \nu' = \nu[Y := 0], \quad \text{and } \nu' \models I(\ell').$$

"An action occurs, location may change, some clocks may be reset, time does not advance."

11 - 2014-07-01 - Stasem -

Transition Sequences, Reachability

ullet A transition sequence of ${\cal A}$ is any finite or infinite sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots$$

with

- ullet $\langle \ell_0,
 u_0
 angle \in C_{ini}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$

11 - 2014-07-01 - Stasem -

Transition Sequences, Reachability

ullet A **transition sequence** of ${\cal A}$ is any finite or infinite sequence of the form

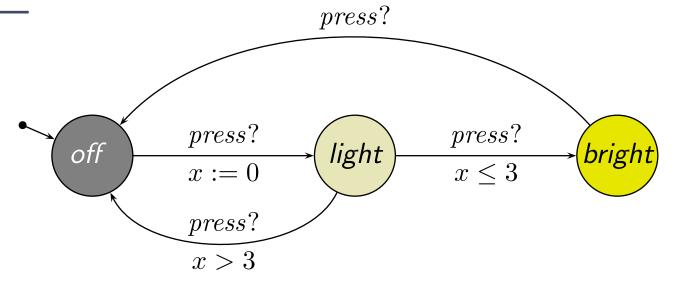
$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots$$

with

- $\langle \ell_0, \nu_0 \rangle \in C_{ini}$,
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $\mathcal{T}(\mathcal{A})$ with $\langle \ell_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \ell_{i+1}, \nu_{i+1} \rangle$
- A configuration $\langle \ell, \nu \rangle$ is called reachable (in \mathcal{A}) if and only if there is a transition sequence of the form

$$\langle \ell_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

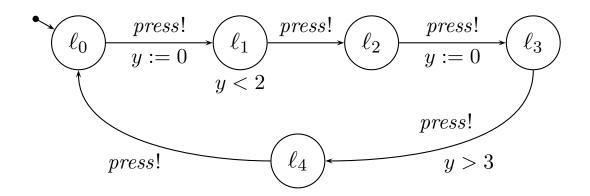
• A **location** ℓ is called **reachable** if and only if **any** configuration $\langle \ell, \nu \rangle$ is reachable, i.e. there exists a valuation ν such that $\langle \ell, \nu \rangle$ is reachable.



$$\begin{array}{l} \langle \textit{off}, x = 0 \rangle \xrightarrow{2.5} \langle \textit{off}, x = 2.5 \rangle \xrightarrow{1.7} \langle \textit{off}, x = 4.2 \rangle \\ \xrightarrow{press?} \langle \textit{light}, x = 0 \rangle \xrightarrow{2.1} \langle \textit{light}, x = 2.1 \rangle \\ \xrightarrow{press?} \langle \textit{bright}, x = 2.1 \rangle \xrightarrow{10} \langle \textit{bright}, x = 12.1 \rangle \\ \xrightarrow{press?} \langle \textit{off}, x = 12.1 \rangle \\ \xrightarrow{press?} \langle \textit{light}, x = 0 \rangle \xrightarrow{0} \langle \textit{light}, x = 0 \rangle \end{array}$$

Discussion: Set of Configurations

Recall the user model for our light controller:



• "Good" configurations:

$$\langle \ell_1, y = 0 \rangle, \langle \ell_1, y = 1.9 \rangle, \quad \langle \ell_2, y = 1000 \rangle,$$

 $\langle \ell_2, y = 0.5 \rangle, \quad \langle \ell_3, y = 27 \rangle$

"Bad" configurations

$$\langle \ell_1, y = 2.0 \rangle, \langle \ell_1, y = 2.5 \rangle$$

11 - 2014-07-01 - Stasem -

Two Approaches to Exclude "Bad" Configurations

The approach taken for TA:

- Rule out bad configurations in the step from \mathcal{A} to $\mathcal{T}(\mathcal{A})$. "Bad" configurations are not even configurations!
- Recall Definition 4.4:
 - $Conf(A) = \{\langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \}$
 - $C_{ini} = \{\langle \ell_{ini}, \nu_0 \rangle\} \cap Conf(\mathcal{A})$
- Note: Being in Conf(A) doesn't mean to be reachable.
- The approach not taken for TA:
 - ullet consider every $\langle \ell,
 u
 angle$ to be a configuration, i.e. have

$$Conf(\mathcal{A}) = \{\langle \ell, \nu \rangle \mid \ell \in L, \nu : X \to \mathsf{Time} / \mathcal{U} / \mathcal{H} / \mathcal{U} \}$$

"bad" configurations not in transition relation with others, i.e. have, e.g.,

$$\langle \ell, \nu \rangle \xrightarrow{t} \langle \ell, \nu + t \rangle$$

if and only if $\forall\,t'\in[0,t]:\nu+t'\models I(\ell)$ and $\nu+t'\models I(\ell').$

Computation Path, Run

1 - 2014-07-01 - Starun -

Computation Paths

- $\langle \ell, \nu \rangle, t$ is called **time-stamped configuration**
- time-stamped delay transition: $\langle \ell, \nu \rangle, t \xrightarrow{t'} \langle \ell, \nu + t' \rangle, t + t'$ iff $t' \in \text{Time}$ and $\langle \ell, \nu \rangle \xrightarrow{t'} \langle \ell, \nu + t' \rangle$.
- time-stamped action transition: $\langle \ell, \nu \rangle, t \xrightarrow{\alpha} \langle \ell', \nu' \rangle, t$ iff $\alpha \in B_{?!}$ and $\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$.

1 - 2014-07-01 - Starun

Computation Paths

- $\langle \ell, \nu \rangle$, t is called **time-stamped configuration**
- time-stamped delay transition: $\langle \ell, \nu \rangle, t \xrightarrow{t'} \langle \ell, \nu + t' \rangle, t + t'$ iff $t' \in \text{Time}$ and $\langle \ell, \nu \rangle \xrightarrow{t'} \langle \ell, \nu + t' \rangle$.
- time-stamped action transition: $\langle \ell, \nu \rangle, t \xrightarrow{\alpha} \langle \ell', \nu' \rangle, t$ iff $\alpha \in B_{?!}$ and $\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$.

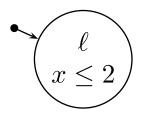
A sequence of time-stamped configurations

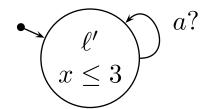
$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

is called **computation path** (or path) of A **starting in** $\langle \ell_0, \nu_0 \rangle, t_0$ if and only if it is either infinite or maximally finite.

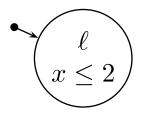
• A computation path (or path) is a computation path starting at $\langle \ell_0, \nu_0 \rangle, 0$ where $\langle \ell_0, \nu_0 \rangle \in C_{ini}$.

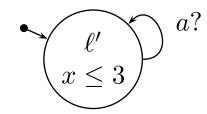
Timelocks and Zeno Behaviour





Timelocks and Zeno Behaviour





Timelock:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{2} \langle \ell, x = 2 \rangle, 2$$

 $\langle \ell', x = 0 \rangle, 0 \xrightarrow{3} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \langle \ell', x = 3 \rangle, 3 \xrightarrow{a?} \dots$

Zeno behaviour:

$$\langle \ell, x = 0 \rangle, 0 \xrightarrow{1/2} \langle \ell, x = 1/2 \rangle, \frac{1}{2} \xrightarrow{1/4} \langle \ell, x = 3/4 \rangle, \frac{3}{4} \dots$$

$$\xrightarrow{1/2^n} \langle \ell, x = (2^n - 1)/2^n \rangle, \frac{2^n - 1}{2^n} \dots$$

Real-Time Sequence

Definition 4.9. An infinite sequence

$$t_0, t_1, t_2, \ldots$$

of values $t_i \in \text{Time for } i \in \mathbb{N}_0$ is called **real-time sequence** if and only if it has the following properties:

• Monotonicity:

$$\forall i \in \mathbb{N}_0 : t_i \leq t_{i+1}$$

Non-Zeno behaviour (or unboundedness or progress):

$$\forall t \in \mathsf{Time} \ \exists i \in \mathbb{N}_0 : t < t_i$$

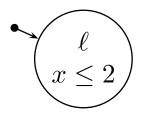
Definition 4.10. A **run** of \mathcal{A} **starting** in the time-stamped configuration $\langle \ell_0, \nu_0 \rangle, t_0$ is an infinite computation path of \mathcal{A}

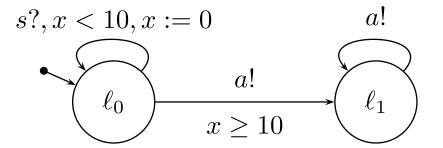
$$\xi = \langle \ell_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

where $(t_i)_{i \in \mathbb{N}_0}$ is a real-time sequence.

If $\langle \ell_0, \nu_0 \rangle \in C_{ini}$ and $t_0 = 0$, then we call ξ a **run** of \mathcal{A} .

Example:





References

[Behrmann et al., 2004] Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.