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Given: A timed automaton A and one of its control locations .

Question: Is ¢ reachable?

That is, is there a transition sequence of the form
(G 0) 25 (01,) 2 (b, 0) 25 -2 (6, 0), by = €

in the labelled transition system 7 (A)?

Note: Decida

y is not soo obvious, recall that
o clocks range over real numbers, thus infinitely many configurations,

o at each configuration, uncountably many transitions 4 may originate

Consequence: The timed automata as we consider them here cannot
encode a 2-counter machine, and they are strictly less expressive than DC.
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Contents & Goals

Last Lecture:

o Networks of

* Uppaal Demo

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.
* What are decidable problems of TA?

How can we show this? What are the essential premises of decidability?

* What is a region? What is the region automaton of this TA?

What's the time abstract system of a TA? Why did we consider this?

« What can you say about the ity of Regi based reachabili
analysis?
« Content:
 Timed Transition System of network of timed automata

 Location Reachability Problem

« Constructive, region-based decidal
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Decidability of The Location Reachability Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

« Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INg.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

o Lem. 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

o Lem. 4.32: location reachability of /(.A)
preserved in R(A).

Lem. 4.28: R(A) s finite.

The Location Reachability Problem
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Without Loss of Generality: Natural Constants
Recall: Simple clock constraints are p :=z ~c|z—y~c|pAp
with 7,y € X, c € Qf, and ~€ {<,>,<,>}.
o Let C(A) = {c € QF | c appears in A} — C(A) is finite! (Why?)
e Let ¢4 be the least common multiple of the denominators in C(A).
o Let t4- A be the TA obtained from A by multiplying all constants by ¢ 4.
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Without Loss of Generality: Natural Constants
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Recall: Simple clock constraints are p i=x ~c|z—y~c|pAp
with 2,y € X, c € Q] and ~€ {<,>,<,>}.

o Let C(A) = {c € Q | c appears in A} — C(A) is finite! (Why?)
o Let t4 be the least common multiple of the denominators in C(A).
o Let ¢4 - A be the TA obtained from A by multiplying all constants by t 4.
o Then:
e C(ta-A) C Ny
o A location ¢ is reachable in t 4 - A if and only if £ is reachable in A.

o That is: we can without loss of generality in the following consider only
timed automata A with C'((A) C INg.

Definition. Let = be a clock of timed automaton A (with C(A) C
Ng). We denote by ¢, € INy the largest time constant ¢ that
appears together with z in a constraint of A.

Time-abstract Transition System

Definition 4.19. [Time-abstract transition system]
Let A be a timed automaton.

The time-abstract transition system U/(.A)

is obtained from 7 (A) (Def. 4.4) by taking

U(A) = (Conf (A), By, {==| a € Bn}, Cini)

where

=%.C Conf(A) x Conf(A)

is defined as follows: Let (¢,v),(¢',v') € Conf(A) be configura-
tions of A and o € By an action. Then

(ev) = (£.)

if and only if there exists ¢ € Time such that

) 5o (e, v).
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Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INg.

X Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

x

Lem. 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of /(A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.
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Example 7 (C,v) =2 (0,0 iff 3t € Time o (£,0) 5 0 2 (¢,1/) 7

press?

N >3 ﬂ’.\|l|.ﬂo
Clpt x> ZE o ey s, wll £ w b ylduios 2, ¢h,0> L comm>
Lo w20 B <l o> Ve, wy EERY ks
x> Dl enr> N ol b L0 2 st it awp? el 2L
<, <05 Ly xes> 00, w0 ol <offxs5> L s>

() x=0> .l‘.bA{k L x<0 Mo, wauds 9o hon.
<k, x=1> MvAt,.gE..x,&V VES, te0, x=p?

2
Lhagt x=18> L, x =8> N, o &p
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Helper: Relational Composition

7 Recall: T(A) = (Conf(A), Time U By, {2 A € Time U Bn}, Cini)

A . . X .
» Note: The = are binary relations on configurations.

Definition. Let A be a TA. For all (¢1,v1), {€2,12) € Conf(A),
() 2 0 2 (05, 1m)
[

if and only if there exists some (¢, /) € Conf(A) such that

(r,0) 25 (€,0) and (€,1) 22 (63, ).

Remark. The following property of time additivity holds.

. t; t: t1+t;
Vi1, tp € Time : 2y o 22, = iz,

Location Reachability is preserved in U(.A)

Lemma 4.20. For all locations ¢ of a given timed automaton A
the following holds:

{ is:reachable in 7 (A) if and only if £ is.reachable in U(A).
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Decidability of The Location Reachability Problem

15

o0

Claim: (Theorem 4.33)

lable for timed automata.

The location reachability problem is de

Approach: Constructive proof.

v Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

v Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, ite-state.

v Lem. 4.20: location reachability
of A is preserved in U(A)

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

ty of U(A)

x

x

Lem. 4.32: location reachal
is preserved in R(A).

X Lem. 4.28: R(A) is

Distinguishing Clock Valuations: Two Clocks

I
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press?

Indistinguishable Configurations

press?

R S I )
. Corght. =0) - VRE
&7 (bright,w = 0.1) 22 ...

%N {brig| z= )

7 (bright,z = 1.0) 25 ... } et

o (bright, = — 3.0) B ... } et
Py ‘w.ow
22 light, - = 0) J
(off,x = 0) E=2 ... Jx=o
, (off, = 2.9) =% i
s %f (off,z = 3.0) %= ... =T
N ot = 3000 22 Yo
E (off, = = 127.1415) 255 .
T 135
Helper: Floor and Fraction
o Recall:
Each ¢ € R can be split into
o floor [¢] € Ny and
o fraction frac(q) € [0,1)
such that
q = lg] + frac(q).
16/33

Distinguishing Clock Valuations: One Clock

C(A) CIN)

o Assume A with only a single clock, i.e. X = {x} (recal

* A could detect, for a given v,
whether v(z) € {0,

O X 34xe3 50

* A cannot disting
ifvi(z) € (k,k+1
and k€ {0,...,c, — 1}.

X>1ax22

02

o A cannot distinguish v, and 1o

X246,
if vi(2) > cp i = 1,2, O c

If ¢, > 1, there are (2¢, + 2) equivalence classes:

{0}, (0, 1), {1}, (1,2), - {ew} (e 00)}

If vi(x) and v;(x) are in the same equivalence class,
then vy and v, are indistiguishable by A.

An Equivalence-Relation on Valuations
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Definition. Let X be a set of clocks, ¢, € Ny for each clock
x € X, and vy, v clock valuations of X.

We set v = vy iff the following four conditions are satisfied.
(1) Forallz € X,

[v1(2)] = Lvs(2)] o both 11 (x) > ¢, and va(x) > ¢,
(2) Forall 2 € X with 14 () < ¢,
frac(vi(x)) = 0 if and only if frac(vs(z)) = 0.

(3) Forall 2,y € X,

[11(@) =11(y)] = [v2(z) = v2(y)]
or both |14 (z) — 1(y)| > ¢ and [va(z) — va(y)| > c.

(8) Forall 2,y € X with —c < 1 (z) — 1 (y) < ¢,
Jrac(u(z) — 1 (y)) = 0 if and only if frac(vs(z) — va(y)) = 0.
\ Where ¢ = max{cz, c,}. J

1433
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Example: Regions| @) vaex: @) = @) v (4(2) > e Arafe) > )

B) Vo,ye X : |

(4) Va,ye X : —c

V(I

(@) =0 = frac(rz(x)) = 0)
(z) = ni(y)] = Lva(z) = v2(y)]
(@) =1 (y)| > e Alva(a) —va(y)| > c)

<u@)-wnp) <c =

(frac(vi(z) — v1(y)) = 0 <= frac(va(z) — va(y)) = 0)
v (1) 10,603 =1 =256 A
L) =0 =Ll o, 0
(&) fpc(wbl) =0 = fac () becusse. (1) wot
relys)) 20, fcliy D20 sihiof
1 m () Lu () -n)s =0 = by
) .
LY
0
0 1

Example: Region Automaton
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20140715

13

2,
4
<
A
=

L=
222 light, [z = 0])
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press?

press?

(bright, [z = 0]) &= ...

(bright, [z = 0.1]) 2= ...
(bright, [z = 1.0]) 2= ...
(bright, [z = 3.0]) 2= ...
(bright, [z = 3.001]) %= ...
(off, [z = 0]) &= ...
(off, [z = 2.9]) &= ...
(off, [z = 3.0) ==
(off, [+ = 3.001]) == ...
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Regions
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Proposition. = is an equivalence relation.

Definition 4.27. For a given valuation v we denote by [v] the
equivalence class of . We call equivalence classes of = regions.

1933

Remark

Remark 4.30. That a configuration (£, [1/]) is reachable in R(A)
represents the fact, that all (£,v) are reachable.

IAW: in A, we can observe v when
location £ has just been entered.

The clock values reachable by staying/letting time pass in ¢ are
not explicitly represented by the regions of R(A).

2233

The Region Automaton

Definition 4.29. [Region Automaton] The region automaton
R(A) of the timed automaton A is the labelled transition system

R(A) = (Conf (R(A)), B, {5 | @ € Bu}, Cins)
where
o Conf(R(A)) = {(6,[W]) | £ € Lyv: X — Time,w |= I(8)},
o for each a € By,

a

(€, [V]) = geay (€. [V]) if and only if (£, 1) == (¢, V)

U(A), and
® Cini = {{Cini; [Vini]) } N Conf (R(A)) with vini(X) = {0}

Proposition. The transition relation of R(A) is well-defined, that
is, independent of the choice of the representative v of a region [v].

20733

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

v

AN

x

x

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INg.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of Ais preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of 24(.A)
preserved in R(A).

Lem. 4.28: R(A) is finite.
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Region Automaton Properties

Lemma 4.32. [Correctness| For all locations £ of a given timed
automaton A the following holds:

L is reachable in U(.A) if and only if £ is reachable in R(A).

For the Proof: <L13> @HWA@.M_,.&V

Definition 4.21. [Bisimulation] An equivalence relation_~ on val-
uations is a (strong) ion if and only if, wh

v ~ v and (i) =25 (0, 0])

15

then there exists v with v} ~ v4 and (£, o) == (', 14).

13

Observations Regarding the Number of Regions

o Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

o Note: the upper bound is a worst case, not an exact bound.

Sdec
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Decidability of The Location Reachability Problem
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v Lem. 4.2

Claim: (Theorem 4.33)

ty problem is decidable for timed automata.

Approach: Constructive proof.

v Observe: clock constraints are simple

— w.l.o.g. assume constants ¢ € Ny.

v Def. 4.19: time-abstract transition

system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

location reachability
of Ais preserved in U(A).

' Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

Lem. 4.32: location reachability of /(A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.

x

n
N
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.
Approach: Constructive proof.
v/ Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € _Zo.
v Def. 4.19: time-abstract transition

system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

v Lem. 4.20: location reachability
of Ais preserved in U(A).

v Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

v Lem. 4.32: location reachability of ¢/(A)
preserved in R(A).

Lem. 4.28: R(A) s finite.

AN
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The Number of Regions

Lemma 4.28. Let X be a set of clocks, ¢, € Ny the maximal
constant for each = € X, and ¢ = max{c, | z € X}. Then

(2c+ 2)X1 - (4c+ 3)31XHIXI-1)

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]
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Putting It All Together

Let A= (L,B,X.1,FE, () be a timed automaton, ¢ € L a location.
© R(A) can be constructed effectively.

ns in L (by del
There are finitely many regions by Lemma 4.28.

So Conf(R(A)) e (by construction).

It is decidable whether (Ciyi¢ of R(A) is empty) or whether there exists a
sequence

There are finitely many loca

(Linis Vini]) S reay (G, 1)) SRy -« SRy (s [va])

such that ¢, = ¢ (reacha graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.
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The Constraint Reachability Problem
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14.07-15

o Given: A timed automaton 4, one of its control locations ¢, and a clock
constraint .

* Question: Is a configuration (£, v) reachable where v |= ¢, i.e. is there a
transition sequence of the form

(o V) 25 (00,01) 225 () 225 25 () = (L)
in the labelled transition system 7 (A) with v |= ¢?

o Note: we just observed that R(.A) loses some information about the clock
valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed au-
tomata is decidable.

30733

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time
Systems - Formal Specification and Automatic Verification. Cambridge
University Press.

The Delay Operation
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o Let [v] be a clock region.
o We set delay[v] := {v/ +t |V = vand t € Time}.

1/
7

0 1

0
T

o Note: delay[v] can be represented as a e union of regions.

For example, with our two-clock example we have

delaylz = y = 0] = [x=40] u [0¢x=5¢1T 0y [ieza=y] v [12x29]

3l
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