Real-Time Systems

Lecture 13: Location Reachability (or: The Region Automaton)

2014-07-15

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

3 - 2014-07-15 - Sprelim -

Contents & Goals

Last Lecture:

- Networks of Timed Automata
- Uppaal Demo

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What are decidable problems of TA?
 - How can we show this? What are the essential premises of decidability?
 - What is a region? What is the region automaton of this TA?
 - What's the time abstract system of a TA? Why did we consider this?
 - What can you say about the complexity of Region-automaton based reachability analysis?

Content:

- Timed Transition System of network of timed automata
- Location Reachability Problem
- Constructive, region-based decidability proof

The Location Reachability Problem

The Location Reachability Problem

Given: A timed automaton A and one of its control locations ℓ .

Question: Is ℓ reachable?

That is, is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle, \ell_n = \ell$$

in the labelled transition system $\mathcal{T}(A)$?

The Location Reachability Problem

Given: A timed automaton A and one of its control locations ℓ .

Question: Is ℓ reachable?

That is, is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle, \ell_n = \ell$$

in the labelled transition system $\mathcal{T}(A)$?

- Note: Decidability is not soo obvious, recall that
 - clocks range over real numbers, thus infinitely many configurations,
 - ullet at each configuration, uncountably many transitions $\stackrel{t}{
 ightarrow}$ may originate
- Consequence: The timed automata as we consider them here cannot encode a 2-counter machine, and they are strictly less expressive than DC.

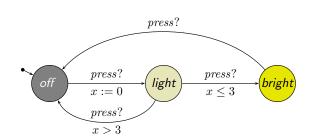
Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- Lem. 4.20: location reachability of A is **preserved** in U(A).
- Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- Lem. 4.28: $\mathcal{R}(\mathcal{A})$ is finite.



Without Loss of Generality: Natural Constants

Recall: Simple clock constraints are $\varphi := x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$ with $x, y \in X$, $c \in \mathbb{Q}_0^+$, and $\sim \in \{<, >, \leq, \geq\}$.

Without Loss of Generality: Natural Constants

Recall: Simple clock constraints are $\varphi := x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$ with $x, y \in X$, $c \in \mathbb{Q}^+_0$, and $\sim \in \{<, >, \leq, \geq\}$.

- Let $C(A) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } A\} C(A) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .

Without Loss of Generality: Natural Constants

Recall: Simple clock constraints are $\varphi := x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$ with $x, y \in X$, $c \in \mathbb{Q}_0^+$, and $\sim \in \{<, >, \leq, \geq\}$.

- Let $C(A) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } A\} C(A) \text{ is finite! (Why?)}$
- Let $t_{\mathcal{A}}$ be the least common multiple of the denominators in $C(\mathcal{A})$.
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .
- Then:
 - $C(t_A \cdot A) \subset \mathbb{N}_0$.
 - A location ℓ is reachable in $t_A \cdot A$ if and only if ℓ is reachable in A.

Without Loss of Generality: Natural Constants

Recall: Simple clock constraints are $\varphi:=x\sim c\mid x-y\sim c\mid \varphi\wedge\varphi$ with $x,y\in X$, $c\in\mathbb{Q}^+_0$, and $\sim\in\{<,>,\leq,\geq\}$.

- Let $C(A) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } A\} C(A) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .
- Then:
 - $C(t_A \cdot A) \subset \mathbb{N}_0$.
 - A location ℓ is reachable in $t_A \cdot A$ if and only if ℓ is reachable in A.
- That is: we can without loss of generality in the following consider only timed automata \mathcal{A} with $C(\mathcal{A}) \subset \mathbb{N}_0$.

Without Loss of Generality: Natural Constants

Recall: Simple clock constraints are $\varphi := x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$ with $x, y \in X$, $c \in \mathbb{Q}_0^+$, and $\sim \in \{<, >, \leq, \geq\}$.

- Let $C(A) = \{c \in \mathbb{Q}_0^+ \mid c \text{ appears in } A\} C(A) \text{ is finite! (Why?)}$
- Let t_A be the least common multiple of the denominators in C(A).
- Let $t_A \cdot A$ be the TA obtained from A by multiplying all constants by t_A .
- Then:
 - $C(t_A \cdot A) \subset \mathbb{N}_0$.
 - A location ℓ is reachable in $t_A \cdot A$ if and only if ℓ is reachable in A.
- That is: we can without loss of generality in the following consider only timed automata \mathcal{A} with $C(\mathcal{A}) \subset \mathbb{N}_0$.

Definition. Let x be a clock of timed automaton \mathcal{A} (with $C(\mathcal{A}) \subset \mathbb{N}_0$). We denote by $c_x \in \mathbb{N}_0$ the **largest time constant** c that appears together with x in a constraint of \mathcal{A} .

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is **decidable** for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- **X** Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- **X** Lem. 4.20: location reachability of \mathcal{A} is **preserved** in $\mathcal{U}(\mathcal{A})$.
- **X** Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- **X** Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- **X** Lem. 4.28: $\mathcal{R}(A)$ is finite.

Helper: Relational Composition

Recall: $\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \xrightarrow{\lambda} | \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$

• Note: The $\xrightarrow{\lambda}$ are binary relations on configurations.

Definition. Let \mathcal{A} be a TA. For all $\langle \ell_1, \nu_1 \rangle$, $\langle \ell_2, \nu_2 \rangle \in Conf(\mathcal{A})$,

$$\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \circ \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$$

if and only if there exists some $\langle \ell', \nu' \rangle \in Conf(A)$ such that

$$\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \langle \ell', \nu' \rangle$$
 and $\langle \ell', \nu' \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$.

Helper: Relational Composition

Recall: $\mathcal{T}(\mathcal{A}) = (Conf(\mathcal{A}), \mathsf{Time} \cup B_{?!}, \{ \xrightarrow{\lambda} | \lambda \in \mathsf{Time} \cup B_{?!} \}, C_{ini})$

• Note: The $\xrightarrow{\lambda}$ are binary relations on configurations.

Definition. Let \mathcal{A} be a TA. For all $\langle \ell_1, \nu_1 \rangle$, $\langle \ell_2, \nu_2 \rangle \in Conf(\mathcal{A})$,

$$\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \circ \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$$

if and only if there exists some $\langle \ell', \nu' \rangle \in Conf(A)$ such that

$$\langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_1} \langle \ell', \nu' \rangle$$
 and $\langle \ell', \nu' \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle$.

Remark. The following property of time additivity holds.

$$\forall t_1, t_2 \in \mathsf{Time} : \xrightarrow{t_1} \circ \xrightarrow{t_2} = \xrightarrow{t_1 + t_2}$$

Time-abstract Transition System

Definition 4.19. [Time-abstract transition system]

Let \mathcal{A} be a timed automaton.

The time-abstract transition system $\mathcal{U}(\mathcal{A})$

is obtained from $\mathcal{T}(\mathcal{A})$ (Def. 4.4) by taking

$$\mathcal{U}(\mathcal{A}) = (Conf(\mathcal{A}), B_{?!}, \{ \stackrel{\alpha}{\Longrightarrow} | \alpha \in B_{?!} \}, C_{ini})$$

where

$$\Longrightarrow \subseteq Conf(\mathcal{A}) \times Conf(\mathcal{A})$$

is defined as follows: Let $\langle \ell, \nu \rangle, \langle \ell', \nu' \rangle \in Conf(\mathcal{A})$ be configurations of \mathcal{A} and $\alpha \in B_{?!}$ an action. Then

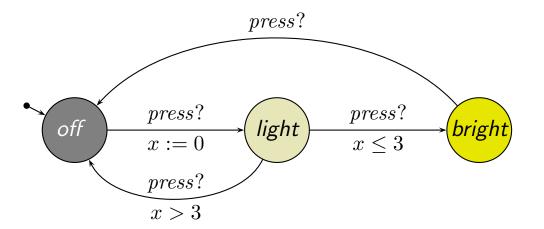
$$\langle \ell, \nu \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu' \rangle$$

if and only if there exists $t \in \mathsf{Time}$ such that

$$\langle \ell, \nu \rangle \xrightarrow{t} \circ \xrightarrow{\alpha} \langle \ell', \nu' \rangle.$$

Example

 $\langle \ell, \nu \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu' \rangle \text{ iff } \exists \, t \in \mathsf{Time} \bullet \langle \ell, \nu \rangle \stackrel{t}{\to} \circ \stackrel{\alpha}{\to} \langle \ell', \nu' \rangle$



Location Reachability is preserved in $\mathcal{U}(\mathcal{A})$

Lemma 4.20. For all locations ℓ of a given timed automaton $\mathcal A$ the following holds:

 ℓ is reachable in $\mathcal{T}(\mathcal{A})$ if and only if ℓ is reachable in $\mathcal{U}(\mathcal{A})$.

Proof:

Decidability of The Location Reachability Problem

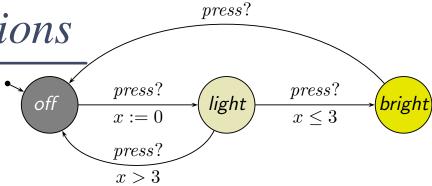
Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system $\mathcal{U}(\mathcal{A})$ abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of \mathcal{A} is **preserved** in $\mathcal{U}(\mathcal{A})$.
- **X** Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- **X** Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- **X** Lem. 4.28: $\mathcal{R}(A)$ is finite.

Indistinguishable Configurations



 $\mathcal{U}(\mathcal{A})$:

$$\cdots \stackrel{\mathsf{press}}{\Longrightarrow} \langle \mathsf{light}, x = 0 \rangle$$

$$\langle \mathsf{bright}, x = 0 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, x = 0.1 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, x = 1.0 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, x = 3.0 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, x = 3.001 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, x = 2.9 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, x = 3.001 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, x = 3.001 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, x = 127.1415 \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

Distinguishing Clock Valuations: One Clock

- Assume \mathcal{A} with only a single clock, i.e. $X = \{x\}$ (recall: $C(\mathcal{A}) \subset \mathbb{N}$.)
 - \mathcal{A} could detect, for a given ν , whether $\nu(x) \in \{0, \dots, c_x\}$.
 - A cannot distinguish ν_1 and ν_2 if $\nu_i(x) \in (k, k+1), i = 1, 2,$ and $k \in \{0, \dots, c_x - 1\}$.
 - \mathcal{A} cannot distinguish ν_1 and ν_2 if $\nu_i(x) > c_x$, i = 1, 2.

Distinguishing Clock Valuations: One Clock

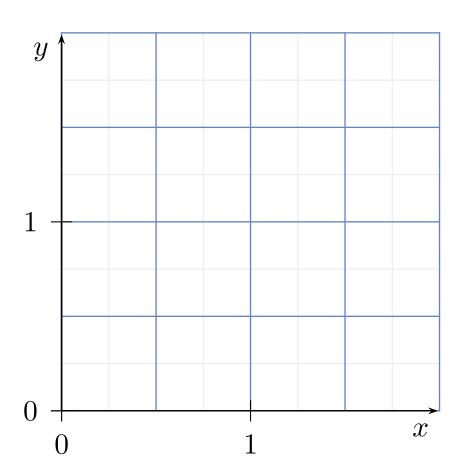
- Assume \mathcal{A} with only a single clock, i.e. $X = \{x\}$ (recall: $C(\mathcal{A}) \subset \mathbb{N}$.)
 - \mathcal{A} could detect, for a given ν , whether $\nu(x) \in \{0, \dots, c_x\}$.
 - \mathcal{A} cannot distinguish ν_1 and ν_2 if $\nu_i(x) \in (k, k+1)$, i=1,2, and $k \in \{0, \dots, c_x-1\}$.
 - \mathcal{A} cannot distinguish ν_1 and ν_2 if $\nu_i(x) > c_x$, i = 1, 2.
- If $c_x \ge 1$, there are $(2c_x + 2)$ equivalence classes:

$$\{\{0\}, (0,1), \{1\}, (1,2), \dots, \{c_x\}, (c_x, \infty)\}$$

If $\nu_1(x)$ and $\nu_2(x)$ are in the **same** equivalence class, then ν_1 and ν_2 are **indistiguishable** by \mathcal{A} .

Distinguishing Clock Valuations: Two Clocks

• $X = \{x, y\}$, $c_x = 1$, $c_y = 1$.



Helper: Floor and Fraction

Recall:

Each $q \in \mathbb{R}_0^+$ can be split into

- floor $|q| \in \mathbb{N}_0$ and
- fraction $frac(q) \in [0,1)$

such that

$$q = \lfloor q \rfloor + frac(q).$$

13 - 2014 - 07 - 15 - Sdec

An Equivalence-Relation on Valuations

Definition. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ for each clock $x \in X$, and ν_1, ν_2 clock valuations of X.

We set $\nu_1 \cong \nu_2$ iff the following **four** conditions are satisfied.

 $|(\mathbf{1})|$ For all $x \in X$,

$$\lfloor \nu_1(x) \rfloor = \lfloor \nu_2(x) \rfloor$$
 or both $\nu_1(x) > c_x$ and $\nu_2(x) > c_x$.

(2) For all $x \in X$ with $\nu_1(x) \le c_x$,

$$frac(\nu_1(x)) = 0$$
 if and only if $frac(\nu_2(x)) = 0$.

(3) For all $x, y \in X$,

$$\lfloor \nu_1(x) - \nu_1(y) \rfloor = \lfloor \nu_2(x) - \nu_2(y) \rfloor$$
 or **both** $|\nu_1(x) - \nu_1(y)| > c$ and $|\nu_2(x) - \nu_2(y)| > c$.

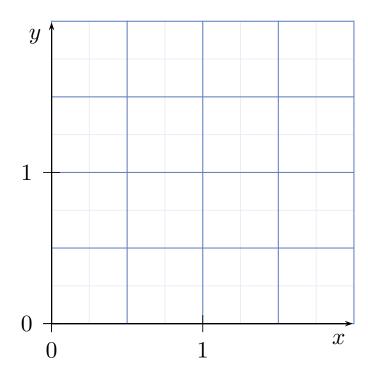
(4) For all $x,y \in X$ with $-c \le \nu_1(x) - \nu_1(y) \le c$,

$$frac(\nu_1(x) - \nu_1(y)) = 0$$
 if and only if $frac(\nu_2(x) - \nu_2(y)) = 0$.

Where $c = \max\{c_x, c_y\}$.

Example: Regions

- $(1) \ \forall x \in X : \lfloor \nu_1(x) \rfloor = \lfloor \nu_2(x) \rfloor \lor (\nu_1(x) > c_x \land \nu_2(x) > c_x)$
- (2) $\forall x \in X : \nu_1(x) \le c_x$ $\Longrightarrow (frac(\nu_1(x)) = 0 \iff frac(\nu_2(x)) = 0)$
- (3) $\forall x, y \in X : \lfloor \nu_1(x) \nu_1(y) \rfloor = \lfloor \nu_2(x) \nu_2(y) \rfloor$ $\vee (|\nu_1(x) - \nu_1(y)| > c \wedge |\nu_2(x) - \nu_2(y)| > c)$
- (4) $\forall x, y \in X : -c \le \nu_1(x) \nu_1(y) \le c \implies (frac(\nu_1(x) \nu_1(y)) = 0 \iff frac(\nu_2(x) \nu_2(y)) = 0)$



Regions

Proposition. \cong is an equivalence relation.

Definition 4.27. For a given valuation ν we denote by $[\nu]$ the equivalence class of ν . We call equivalence classes of \cong regions.

The Region Automaton

Definition 4.29. [Region Automaton] The region automaton $\mathcal{R}(\mathcal{A})$ of the timed automaton \mathcal{A} is the labelled transition system

$$\mathcal{R}(\mathcal{A}) = (Conf(\mathcal{R}(\mathcal{A})), B_{?!}, \{ \xrightarrow{\alpha}_{R(\mathcal{A})} | \alpha \in B_{?!} \}, C_{ini})$$

where

- $Conf(\mathcal{R}(\mathcal{A})) = \{ \langle \ell, [\nu] \rangle \mid \ell \in L, \nu : X \to \mathsf{Time}, \nu \models I(\ell) \},$
- for each $\alpha \in B_{?!}$,

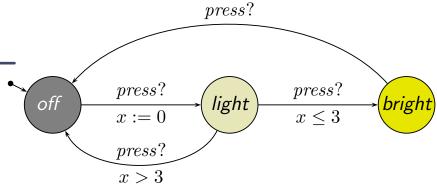
$$\langle \ell, [\nu] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell', [\nu'] \rangle$$
 if and only if $\langle \ell, \nu \rangle \xrightarrow{\alpha} \langle \ell', \nu' \rangle$

in $\mathcal{U}(\mathcal{A})$, and

• $C_{ini} = \{\langle \ell_{ini}, [\nu_{ini}] \rangle\} \cap Conf(\mathcal{R}(\mathcal{A})) \text{ with } \nu_{ini}(X) = \{0\}.$

Proposition. The transition relation of $\mathcal{R}(A)$ is **well-defined**, that is, independent of the choice of the representative ν of a region $[\nu]$.

Example: Region Automaton



 $\mathcal{U}(\mathcal{A})$:

$$\cdots \stackrel{\mathsf{press}}{\Longrightarrow} \langle \mathsf{light}, [x=0] \rangle$$

$$\langle \mathsf{bright}, [x=0] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, [x=0.1] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, [x=1.0] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, [x=3.0] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{bright}, [x=3.001] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, [x=0] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

$$\langle \mathsf{off}, [x=2.9] \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$$

 $\langle \mathsf{off}, [x=3.0] \rangle \stackrel{\mathsf{press}}{\Longrightarrow} \cdots$

 $\langle \mathsf{off}, \lceil x = 3.001 \rceil \rangle \overset{\mathsf{press}}{\Longrightarrow} \cdots$

Remark

Remark 4.30. That a configuration $\langle \ell, [\nu] \rangle$ is reachable in $\mathcal{R}(\mathcal{A})$ represents the fact, that all $\langle \ell, \nu \rangle$ are reachable.

IAW: in A, we can observe ν when

location ℓ has just been entered.

The clock values reachable by staying/letting time pass in ℓ are not explicitly represented by the regions of $\mathcal{R}(\mathcal{A})$.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system $\mathcal{U}(A)$ abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of \mathcal{A} is **preserved** in $\mathcal{U}(\mathcal{A})$.
- ✓ Def. 4.29: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- **X** Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- **X** Lem. 4.28: $\mathcal{R}(A)$ is finite.

Region Automaton Properties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed automaton \mathcal{A} the following holds:

 ℓ is reachable in $\mathcal{U}(\mathcal{A})$ if and only if ℓ is reachable in $\mathcal{R}(\mathcal{A})$.

For the **Proof**:

Definition 4.21. [Bisimulation] An equivalence relation \sim on valuations is a **(strong) bisimulation** if and only if, whenever

$$u_1 \sim \nu_2 \text{ and } \langle \ell, \nu_1 \rangle \stackrel{lpha}{\Longrightarrow} \langle \ell', \nu_1' \rangle$$

then there exists ν_2' with $\nu_1' \sim \nu_2'$ and $\langle \ell, \nu_2 \rangle \stackrel{\alpha}{\Longrightarrow} \langle \ell', \nu_2' \rangle$.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system $\mathcal{U}(A)$ abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of \mathcal{A} is **preserved** in $\mathcal{U}(\mathcal{A})$.
- ✓ **Def. 4.29**: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- ✓ Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- **X** Lem. 4.28: $\mathcal{R}(A)$ is finite.

- Saler -

The Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

$$(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X|\cdot(|X|-1)}$$

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

Observations Regarding the Number of Regions

• Lemma 4.28 in particular tells us that each timed automaton (in our definition) has finitely many regions.

Note: the upper bound is a worst case, not an exact bound.

Decidability of The Location Reachability Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

- ✓ Observe: clock constraints are simple w.l.o.g. assume constants $c \in \mathbb{N}_0$.
- ✓ Def. 4.19: time-abstract transition system $\mathcal{U}(A)$ abstracts from uncountably many delay transitions, still infinite-state.
- ✓ Lem. 4.20: location reachability of \mathcal{A} is **preserved** in $\mathcal{U}(\mathcal{A})$.
- ✓ **Def. 4.29**: region automaton $\mathcal{R}(A)$ equivalent configurations collapse into regions
- ✓ Lem. 4.32: location reachability of $\mathcal{U}(A)$ is **preserved** in $\mathcal{R}(A)$.
- ✓ Lem. 4.28: $\mathcal{R}(A)$ is finite.

Putting It All Together

Let $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ be a timed automaton, $\ell \in L$ a location.

- $\mathcal{R}(\mathcal{A})$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $Conf(\mathcal{R}(\mathcal{A}))$ is finite (by construction).
- It is decidable whether $(C_{init} \text{ of } \mathcal{R}(\mathcal{A}) \text{ is empty})$ or whether there exists a sequence

$$\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_n, [\nu_n] \rangle$$

such that $\ell_n = \ell$ (reachability in graphs).

Putting It All Together

Let $\mathcal{A} = (L, B, X, I, E, \ell_{ini})$ be a timed automaton, $\ell \in L$ a location.

- $\mathcal{R}(\mathcal{A})$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $Conf(\mathcal{R}(\mathcal{A}))$ is finite (by construction).
- It is decidable whether $(C_{init} \text{ of } \mathcal{R}(\mathcal{A}) \text{ is empty})$ or whether there exists a sequence

$$\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha}_{R(\mathcal{A})} \dots \xrightarrow{\alpha}_{R(\mathcal{A})} \langle \ell_n, [\nu_n] \rangle$$

such that $\ell_n = \ell$ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]

The location reachability problem for timed automata is decidable.

The Constraint Reachability Problem

- Given: A timed automaton A, one of its control locations ℓ , and a clock constraint φ .
- Question: Is a configuration $\langle \ell, \nu \rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

in the labelled transition system $\mathcal{T}(A)$ with $\nu \models \varphi$?

• Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

The Constraint Reachability Problem

- Given: A timed automaton \mathcal{A} , one of its control locations ℓ , and a clock constraint φ .
- Question: Is a configuration $\langle \ell, \nu \rangle$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

$$\langle \ell_{ini}, \nu_{ini} \rangle \xrightarrow{\lambda_1} \langle \ell_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \ell_2, \nu_2 \rangle \xrightarrow{\lambda_3} \dots \xrightarrow{\lambda_n} \langle \ell_n, \nu_n \rangle = \langle \ell, \nu \rangle$$

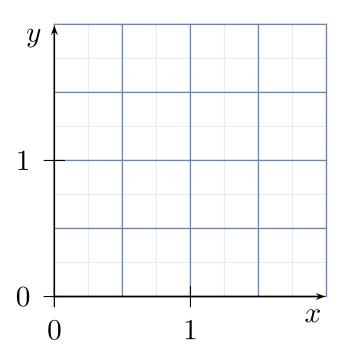
in the labelled transition system $\mathcal{T}(A)$ with $\nu \models \varphi$?

• Note: we just observed that $\mathcal{R}(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

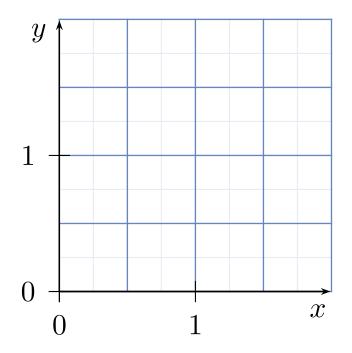
The Delay Operation

- Let $[\nu]$ be a clock region.
- We set $delay[\nu] := \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$



The Delay Operation

- Let $[\nu]$ be a clock region.
- We set $delay[\nu] := \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \mathsf{Time}\}.$



• Note: $delay[\nu]$ can be represented as a **finite** union of regions.

For example, with our two-clock example we have

$$delay[x = y = 0] = [x = y = 0] \cup [0 < x = y < 1] \cup [x = y = 1] \cup [1 < x = y]$$

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.