Real-Time Systems Lecture 14: Regions and Zones

2014-07-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

• Location reachability decidability

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What's a zone? In contrast to a region?
 - Motivation for having zones?
 - What's a DBM? Who needs to know DBMs?

• Content:

- Zones
- Difference Bound Matrices

Zones

(Presentation following [Fränzle, 2007])

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

 $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X| \cdot (|X|-1)}$

is an upper bound on the number of regions.

• In the desk lamp controller,

many regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's **actually** only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$.

So: seems there are even **equivalence classes** of undistinguishable regions.

What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \to \text{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

 $\nu \in z$ if and only if $\nu \models \varphi$.

Example:

7/18

Zone-based Reachability

such that ${\rm Post}_e(\langle \ell,z\rangle)$ yields the configuration $\langle \ell',z'\rangle$ such that

- zone z' denotes exactly those clock valuations ν'
- which are reachable from a configuration $\langle \ell, \nu \rangle$, $\nu \in z$,
- by taking edge $e = (\ell, \alpha, \varphi, Y, \ell') \in E$.

fiel delaying

- 14 - 2014-07-17 - Szones

Assume a function

14 - 2014-07-17 - Szones

 $Post_e : (L \times Zones) \rightarrow (L \times Zones)$

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ yields the configuration $\langle \ell', z' \rangle$ such that

- zone z' denotes exactly those clock valuations ν'
- which are reachable from a configuration $\langle \ell, \nu \rangle$, $\nu \in z$,
- by taking edge $e = (\ell, \alpha, \varphi, Y, \ell') \in E$.

Then $\ell \in L$ is reachable in \mathcal{A} if and only if

 $\operatorname{Post}_{e_n}(\dots(\operatorname{Post}_{e_1}(\langle \ell_{ini}, z_{ini} \rangle) \dots)) = \langle \ell, z \rangle$

for some $e_1, \ldots, e_n \in E$ and some z.

8/18

Zone-based Reachability: In Other Words

9/18

Stocktaking: What's Missing?

Missing:

- Algorithm to effectively compute $\text{Post}_e(\langle \ell, z \rangle)$ for given configuration $\langle \ell, z \rangle \in L \times \text{Zones}$ and edge $e \in E$.
- Decision procedure for whether configuration $\langle \ell', z' \rangle$ is **subsumed** by a given subset of $L \times \text{Zones}$.

Note: Algorithm in general terminates only if we apply widening to zones,

that is, roughly, to take maximal constants c_x into account (not in lecture). $_{10_{/18}}$

What is a Good "Post"?

• If z is given by a constraint $\varphi \in \Phi(X)$, then the zone component z' of $\operatorname{Post}_e(\ell, z) = \langle \ell', z' \rangle$ should also be a constraint from $\Phi(X)$. (Because sets of clock valuations are soo unhandily...)

Good news: the following operations can be carried out by manipulating φ .

• The elapse time operation:

$$\uparrow: \Phi(X) \to \Phi(X)$$

Given a constraint φ , the constraint $\uparrow(\varphi)$, or $\varphi\uparrow$ in postfix notation, is supposed to denote the set of clock valuations

$$\{\nu + t \mid \nu \models \varphi, t \in \mathsf{Time}\}$$

In other symbols: we want

- 14 - 2014-07-17 - Szones

To this end: remove all upper bounds $x \leq c, \, x < c$ from φ and add diagonals.

2

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

• elapse time $\varphi \uparrow$ with

$$\llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \models \varphi, t \in \mathsf{Time} \}$$

• zone intersection $\varphi_1 \wedge \varphi_2$ with

 $\llbracket \varphi_1 \land \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}$

• clock hiding $\exists x.\varphi$ with

 $\llbracket \exists x.\varphi \rrbracket = \{\nu \mid \text{there is } t \in \text{Time such that } \nu[x := t] \models \varphi\}$

• clock reset $\varphi[x := 0]$ with

- 14 - 2014-07-17 - Szones

$$[\varphi[x := 0]]] = \llbracket x = 0 \land \exists x.\varphi]$$

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$\operatorname{Post}_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let time elapse starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable good valuations.

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: φ_3 are the reachable good valuations where e is enabled.

•
$$\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$$

reset clocks: φ_4 are all possible outcomes of taking e from φ_3

•
$$\varphi_5 = \varphi_4 \wedge I(\ell')$$

- 14 - 2014-07-17 - Szones -

intersect with invariant of $\ell' : \varphi_5$ are the good outcomes of taking e from φ_3

Example

- 14 - 2014-07-17 - Szones

- $\varphi_1 = \varphi_0 \uparrow$ let time elapse.
- $\varphi_2 = \varphi_1 \wedge I(\ell)$ intersect with invariant of ℓ
- $\varphi_3 = \varphi_2 \wedge \varphi$ intersect with guard
- $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$ reset clocks
- $\varphi_5 = \varphi_4 \wedge I(\ell')$ intersect with invariant of ℓ'

Difference Bound Matrices • Given a finite set of clocks X, a DBM over X is a mapping $M: (X \cup \{x_0\} \times X \cup \{x_0\}) \rightarrow (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$

• $M(x,y) = (\sim, c)$ encodes the conjunct $x - y \sim c$ (x and y can be x_0).

- 14 - 2014-07-17 - Szones -

• Given a finite set of clocks X, a **DBM** over X is a mapping

 $M: (X \stackrel{.}{\cup} \{x_0\} \times X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<,\le\} \times \mathbb{Z} \cup \{(<,\infty)\})$

- $M(x,y) = (\sim, c)$ encodes the conjunct $x y \sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \land N$, M[x := 0] such that
 - all three are again DBM,
 - $M \uparrow \text{encodes } \varphi_1 \uparrow$,

14 - 2014-07-17 - Szones

- $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
- M[x := 0] encodes $\varphi_1[x := 0]$.
- And there is a canonical form of DBM canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).
- $\bullet\,$ Thus: we can define our ' ${\rm Post}$ ' on DBM, and let our algorithm run on DBM.

15/18

Pros and cons

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
 - maintains a list of location/zone pairs or
 - maintains a list of location/DBM pairs
 - confined wrt. size of discrete state space
 - avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- **Region-based** analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
 - less dependent on size of discrete state space
 - exponential in number of clocks

Contents & Goals

Last Lecture:

- Decidability of the location reachability problem:
 - region automaton & zones

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - By what are TA extended? Why is that useful?
 - What's an urgent/committed location? What's the difference?
 - What's an urgent channel?
 - Where has the notion of "input action" and "output action" correspondences in the formal semantics?

• Content:

- 15 - 2014-07-24 - Sprelim

- Extended TA:
 - Data-Variables, Structuring Facilities, Restriction of Non-Determinism
- The Logic of Uppaal

2/38

Extended Timed Automata

Example (Partly Already Seen in Uppaal Demo)

Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 - E.g. count number of open doors, or intermediate positions of gas valve.

$$(2) \xrightarrow{V>0} (1)$$

$$(2) \xrightarrow{V=V+1} (1)$$

Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 - E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straighforward:
 - If we have control locations $L_0 = \{\ell_1, \ldots, \ell_n\}$,
 - and want to model, e.g., the valve range as a variable v with $\mathcal{D}(v) = \{0, \dots, 2\}$,
 - then just use L = L₀ × D(v) as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the ^λ→.

L is still finite, so we still have a proper TA.

- But: writing $\xrightarrow{\lambda}$ is tedious.
- So: have variables as "first class citizens" and let compilers do the work.

• **Interestingly**, many examples in the literature live without variables: the more abstract the model is, i.e., the fewer information it keeps track of (e.g. in data variables), the easier the verification task.

5/38

Data Variables and Expressions

• Let $(v, w \in) V$ be a set of (integer) variables.

 $(\psi_{int} \in) \Psi(V)$: integer expressions over V using func. symb. +, -,... $(\varphi_{int} \in) \Phi(V)$: integer (or data) constraints over Vusing integer expressions, predicate symbols =, <, \leq ,..., and boolean logical connectives.

• Let $(x, y \in) X$ be a set of clocks.

 $(\varphi \in) \Phi(X, V)$: (extended) guards, defined by

$$\varphi ::= \varphi_{clk} \mid \varphi_{int} \mid \varphi_1 \land \varphi_2$$

where $\varphi_{clk} \in \Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int} \in \Phi(V)$ an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?

(a)
$$\underbrace{x < y \land v > 2}_{\varphi_{\text{th}}}$$
, (b) $\underbrace{x < y \lor v > 2}_{\varphi_{\text{th}}}$, (c) $\underbrace{v < 1 \lor v > 2}_{\varphi_{\text{hh}}}$, (d) $x < v \underset{6_{/38}}{\swarrow}$

• New: a modification or reset (operation) is

 $x = 0, \qquad x \in X,$

or

- 15 - 2014-07-24 - Setasyn

$$v \mathrel{;=} \psi_{int}, \qquad v \in V, \quad \psi_{int} \in \Psi(V).$$

- By R(X, V) we denote the set of all resets.
- By r̄ we denote a finite list ⟨r₁,...,r_n⟩, n ∈ ℕ₀, of reset operations r_i ∈ R(X, V);
 ⟨⟩ is the empty list.
- By $R(X,V)^*$ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?

(a)
$$x := y$$
, (b) $x := v$, (c) $v := x$, (d) $v := w$, (e) $v := 0$
 \swarrow \checkmark \checkmark \checkmark \checkmark \checkmark

Structuring Facilities

global decl.: clocks, variables, channels, constants

- Global declarations of of clocks, data variables, channels, and constants.
- Binary and broadcast channels: chan c and broadcast chan b.
- Templates of timed automata.
- Instantiation of templates (instances are called process).
- System definition: list of processes.

7/38

Restricting Non-determinism

- Urgent locations enforce local immediate progress.
- **Committed locations** enforce **atomic** immediate progress.

ับ

С

• Urgent channels — enforce cooperative immediate progress.

urgent chan press;

9/38

Urgent Locations: Only an Abbreviation...

Replace

- 15 - 2014-07-24 - Setasyn -

where z is a fresh clock:

- reset z on all in-going egdes,
- add z = 0 to invariant.

Question: How many fresh clocks do we need in the worst case for a network of N extended timed automata?

11/38

References

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme. Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). <u>Real-Time</u> <u>Systems - Formal Specification and Automatic Verification</u>. Cambridge University Press.

18/18