Real-Time Systems

Lecture 14: Regions and Zones

2014-07-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x\in \mathbb{N}_0$ the maximal constant for each $x\in X$, and $c=\max\{c_x\mid x\in X\}$. Then $(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X|\cdot (|X|-1)}$

is an upper bound on the number of regions.

many regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's actually only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$. So: seems there are even equivalence classes of undistinguishable regions.

Contents & Goals

Last Lecture:

Location reachability decidability

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What's a zone? In contrast to a region?
 Motivation for having zones?
 What's a DBM? Who needs to know DBMs?
- Content:
- Difference Bound Matrices

(Presentation following [Fränzle, 2007])

Wanted: Zones instead of Regions

- In $\mathcal{R}(\mathcal{L})$ we have transitions:

- $\bullet \ \left\langle \text{(ap)}, \{0\} \right\rangle \xrightarrow{\operatorname{press}^{?}} \left\langle \text{(ap)}, (2,3) \right\rangle, \quad \left\langle \text{(ap)}, \{0\} \right\rangle \xrightarrow{\operatorname{press}^{?}} \left\langle \text{(ap)}, \{3\} \right\rangle$
- Which seems to be a complicated way to write just:
- $\langle \underbrace{\text{(igh)}}, \{0\} \rangle \xrightarrow{press?} \langle \underbrace{\text{(osph)}}, [0, 3] \rangle$

What is a Zone?

Definition. A (clock) zone is a set $z\subseteq (X\to \mathsf{Time})$ of valuations of clocks X such that there exists $\varphi\in\Phi(X)$ with $\nu \in z$ if and only if $\nu \models \varphi$.

is a clock zone by

 $\varphi = (x \leq 2) \wedge (x > 1) \wedge (y \geq 1) \wedge (y < 2) \wedge (x - y \geq 0)$

- Note: Each clock constraint φ is a symbolic representation of a zone.

 But: There's no one-on-one correspondence between clock constraints and zones.

 The zone $z=\emptyset$ corresponds to $(x>1 \land x<1)$, $(x>2 \land x<2)$, ...

More Examples: Zone or Not?

Zone-based Reachability: In Other Words

Zone-based Reachability

such that $\operatorname{Post}_e(\langle \ell,z \rangle)$ yields the configuration $\langle \ell',z' \rangle$ such that

 $\label{eq:continuous} \text{which are reachable from a configuration } (\ell,\nu),\ \nu\in z,$ $\text{by taking edge } e=(\ell,\alpha,\varphi,Y,\ell')\in E.$ find dayinullet zone z' denotes exactly those clock valuations u'

Stocktaking: What's Missing?

- such that $\mathrm{Post}_{\leftarrow}((\ell,z))$ is not already subsumed by \circ add $\mathrm{Post}_{\leftarrow}((\ell,z))$ to R until no more such $(\ell,z)\in R$ and $e\in E$ are found. • pick Set $R \coloneqq \{\langle \ell_{ini}, z_{ini} \rangle\} \subset L \times \mathsf{Zones}$ • a pair $\langle \ell,z \rangle$ from R and • an edge $e \in E$ with source ℓ
- Missing: $\begin{array}{c} \chi \circ \xi_{E} \\ \text{Algorithm to effectively compute } \operatorname{Post}_{\epsilon}(\langle \ell,z\rangle) \\ \text{for given configuration } (\epsilon,z) \in L \times \operatorname{Zones} \text{ and edge } \epsilon \in E. \\ \text{Pecision procedure for whether} \\ \text{configuration } \langle \ell',z'\rangle \text{ is subsumed by a given subset of } L \times \operatorname{Zones}. \end{array}$
- Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

Zone-based Reachability

Given:

Assume a function

$$\operatorname{Post}_e:(L\times\operatorname{\sf Zones})\to(L\times\operatorname{\sf Zones})$$

such that $\operatorname{Post}_e(\langle \ell,z \rangle)$ yields the configuration $\langle \ell',z' \rangle$ such that

- zone z' denotes exactly those clock valuations ν'
- $\bullet \ \ \text{by taking edge} \ e = (\ell,\alpha,\varphi,Y,\ell') \in E.$ • which are reachable from a configuration $\langle \ell, \nu \rangle, \, \nu \in z,$
- Then $\ell \in L$ is reachable in $\mathcal A$ if and only if

for some $e_1, \ldots, e_n \in E$ and some z. $\operatorname{Post}_{e_n}(\dots(\operatorname{Post}_{e_1}(\langle \ell_{\mathit{ini}}, z_{\mathit{ini}} \rangle) \dots)) = \langle \ell, z \rangle$

8/18

What is a Good "Post"?

• If z is given by a constraint $\varphi \in \Phi(X)$, then the zone component z' of $\operatorname{Post}_{\varphi}(\ell,z) = \langle \ell',z' \rangle$ should also be a constraint from $\Phi(X)$. (Because sets of clock valuations are soo unhandily...)

 The elapse time operation: **Good news**: the following operations can be carried out by manipulating φ .

 $\uparrow: \Phi(X) \to \Phi(X)$

Given a constraint φ , the constraint $\uparrow(\varphi)$, or $\varphi\uparrow$ in postfix notation, is supposed to denote the set of clock valuations

In other symbols: we want $\{\nu+t\mid \nu\mid=\varphi,t\in\mathsf{Time}\}.$

To this end: remove all upper bounds $x \le c$, x < c from φ and add diagonals.

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

elapse time φ↑ with

$$\llbracket \varphi \uparrow \rrbracket = \{\nu + t \mid \nu \models \varphi, t \in \mathsf{Time} \}$$

• zone intersection
$$\varphi_1 \wedge \varphi_2$$
 with

$$\llbracket \varphi_1 \wedge \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}$$

• clock hiding
$$\exists x.\varphi$$
 with

$$[\![\exists x.\varphi]\!] = \{\nu \mid \mathsf{there} \; \mathsf{is} \; t \in \mathsf{Time} \; \mathsf{such} \; \mathsf{that} \; \nu[x \coloneqq t] \models \varphi\}$$

• clock reset
$$\varphi[x \coloneqq 0]$$
 with

$$\llbracket \varphi.x \to 0 = x \rrbracket = \llbracket [0 =: x] \varphi \rrbracket$$

12/18

This is Good News...

...because given $\langle \ell,z \rangle = \langle \ell,\varphi_0 \rangle$ and $e = (\ell,\alpha,\varphi,\{y_1,\ldots,y_n\},\ell') \in E$ we have

$$\mathrm{Post}_e(\langle \ell,z\rangle) = \langle \ell',\varphi_5\rangle$$

φ₁ = φ₀ ↑

let time elapse starting from $\varphi_0\colon \varphi_1$ represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

- $\varphi_2 = \varphi_1 \wedge I(\ell)$
- intersect with invariant of $\ell\colon \varphi_2$ represents the reachable good valuations

• $\varphi_3 = \varphi_2 \wedge \varphi$

- $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$ reset clocks: φ_4 are all possible outcomes of taking e from φ_3

• $\varphi_5 = \varphi_4 \wedge I(\ell')$

intersect with guard: $arphi_3$ are the reachable good valuations where e is enabled.

intersect with invariant of $\ell'\colon \varphi_5$ are the good outcomes of taking e from φ_3

Example

- $\varphi_1=\varphi_0\uparrow$ let time elapse. $\varphi_2=\varphi_1\land I(\ell)$ intersect with invariant of ℓ

- $\begin{array}{l} \bullet \ \, \varphi_3 = \varphi_2 \wedge \varphi \\ \bullet \ \, \varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0] \quad \text{reset clocks} \\ \bullet \ \, \varphi_5 = \varphi_4 \wedge I(\ell') \ \, \text{intersect with invariant of ℓ'} \end{array}$

Difference Bound Matrices

Difference Bound Matrices

digne union

• Given a finite set of clocks X, a **PEM** over X is a mapping

 $M: (X \dot{\cup} \{x_0\} \times X \dot{\cup} \{x_0\}) \rightarrow (\{<, \leq\} \times \mathbb{Z} \cup \{(<, \infty)\})$

• $M(x,y) = (\sim,c)$ encodes the conjunct $x-y \sim c$ (x and y can be $x_0)$

x y M(n,y) E {4.5}} Z u f (4.55)

16. 35 16. 35

 $\bullet\,$ Given a finite set of clocks X , a DBM over X is a mapping

$$M: (X \stackrel{.}{\cup} \{x_0\} \times X \stackrel{.}{\cup} \{x_0\}) \rightarrow (\{<, \leq\} \times \mathbb{Z} \cup \{(<, \infty)\})$$

- $M(x,y) = (\sim,c)$ encodes the conjunct $x-y \sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M\uparrow, M\land N$, M[x:=0] such that
- all three are again DBM,
- M ↑ encodes φ₁ ↑,
- $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
- M[x := 0] encodes $\varphi_1[x := 0]$.
- And there is a canonical form of DBM canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).
- Thus: we can define our 'Post' on DBM, and let our algorithm run on DBM.

15/18

Pros and cons

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
- maintains a list of location/zone pairs or
- · maintains a list of location/DBM pairs
- confined wrt. size of discrete state space
- avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- $\label{eq:Region-based} \textbf{Region-based} \ analysis \ provides \ a \ finite-state \ abstraction, \ amenable \ to \ finite-state \ symbolic \ MC$
- exponential in number of clocks less dependent on size of discrete state space

16/18

Contents & Goals

- Decidability of the location reachability problem:
- region automaton & zones

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- By what are TA extended? Why is that useful?
- What's an urgent channel? What's an urgent/committed location? What's the difference?
- Where has the notion of "input action" and "output action" correspondences in the formal semantics?
- Extended TA:
- Data-Variables, Structuring Facilities, Restriction of Non-Determinism
- The Logic of Uppaal

Extended Timed Automata

Data-Variables

Data-Variables

When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 E.g. count number of open doors, or intermediate positions of gas valve.

D(v)={0,1,2}

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables.
 E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straighforward:
- If we have control locations $L_0 = \{\ell_1, \dots, \ell_n\}$,
- and want to model, e.g., the valve range as a variable v with $\mathcal{D}(v) = \{0,\dots,2\}$.
 then just use $L = L_0 \times \mathcal{D}(v)$ as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the $\dot{\rightarrow}$.
- L is still finite, so we still have a proper TA.
- So: have variables as "first class citizens" and let compilers do the work.
- Interestingly, many examples in the literature live without variables: the more abstract the model is, i.e., the fewer information it keeps track of (e.g. in data variables), the easier the verification task.

5/38

Example (Partly Already Seen in Uppaal Demo)

Data Variables and Expressions

- Let $(v,w\in)\ V$ be a set of (integer) variables.
- $(\psi_{int} \in) \Psi(V)$: integer expressions over V using func. symb. $+,-,\dots$ $(\psi_{int} \in) \Phi(V)$: integer (or data) constraints over V using integer expressions, predicate symbols $-,<,\leq,\dots$, and boolean logical connectives.
- Let (x, y ∈) X be a set of clocks.
- $(\varphi\in)\;\Phi(X,V)\colon$ (extended) guards, defined by

 $\varphi ::= \varphi_{clk} \mid \varphi_{int} \mid \varphi_1 \wedge \varphi_2$

where $\varphi_{ck}\in\Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int}\in\Phi(V)$ an integer (or data) constraint.

Extended guard or not extended guard? Why? (a) $x < y \land v > 2$, (b) $x < y \lor v > 2$, (c) $v < 1 \lor v > 2$, (d) $x < v \lor v < 2$, $v < 1 \lor v < 1$

Modification or Reset Operation

New: a modification or reset (operation) is

 $x := 0, \quad x \in X,$

 $v := \psi_{int}, \quad v \in V, \quad \psi_{int} \in \Psi(V).$

- By R(X,V) we denote the set of all resets. By \vec{r} we denote a finite list $\langle r_1,\dots,r_n\rangle$, $n\in\mathbb{N}_0$, of reset operations $r_i\in R(X,V)$; $\langle \rangle$ is the empty list.
- By $R(X,V)^{st}$ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why? (a)
$$x:=y$$
. (b) $x:=v$. (c) $v:=x$. (d) $v:=w$. (e) $v:=0$ \times

Structuring Facilities

global decl.: clocks, variables, channels, constants

- ullet Binary and broadcast channels: chan c and broadcast chan b. Global declarations of of clocks, data variables, channels, and constants.
- Templates of timed automata.
- Instantiation of templates (instances are called process).
- System definition: list of processes.

Definition 4.39. An exten $\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$ led timed automaton is a structure Extended Timed Automata

Urgent Locations: Only an Abbreviation...

where L,B,X,I,ℓ_{nn} are as in Def. 4.3, except that location invariants in I are downward closed, and where

- C ⊆ L: committed locations,

 $(\ell,\alpha,\varphi,\vec{r},\ell') \in E \wedge \mathrm{chan}(\alpha) \in U \implies \varphi = true.$

Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

Question: How many fresh clocks do we need in the worst case for a network of ${\cal N}$ extended timed automata?

10/38

• reset z on all in-going egdes, • add z=0 to invariant. where z is a fresh clock:

Restricting Non-determinism

Urgent locations — enforce local immediate progress.

Committed locations — enforce atomic immediate progress.

 Urgent channels — enforce cooperative immediate progress. urgent chan press;

References

17/18

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme. Lecture. Summer Semester 2007, Carl-von-Ossietzky Universität Olderburg. [Olderog and Dierks, 2008] Olderog. E.-R. and Dierks, 1008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

18/18