Contents & Goals

Last Lecture:

Real-Time Systems « Decidability of the location reachability problem:
© region automaton & zones
. ¥ o Extended Timed A
Lecture 15: Extended TA Cont’d, xtended Timed Automata syntax Evtonded Timed Automata

This Lecture:

Uppaal Queries, Testable DC

o Educational Objectives: Capabilities for following tasks/questions.

= What's an urgent/committed location? What's the difference? Urgent channel
2014-07-24 o Where has the notion of "
the formal semantics?
o How can we relate TA and DC formulae? What's a bit tricky about that?
o Can we use Uppaal to check whether a TA satisfies a DC formula? }

put action” and "output action” correspondences in

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany o Content:

g « Extended TA semantics
g » The Logic of Uppaal
H o Testable DC - E e
Recall: Extended Timed Automata Operational Semantics of Networks Helpers: Extended Valuations and Timeshift
n 4.39. An extended timed automaton is a structure Definition 4.40. Let A.; = (L;, Ci, B;, Ui, X3, Vi, I;, E, NS:L.J/ o Now: v: XUV — TimeUD(V)
1 <i <n, be extended timed automata with pairwise disjoint sets « Canonically extends to v : ¥(V)) — D (valuation of expression).
Ae = (L,C, B,UX, V.1, B, bins) of clocks X, y V)= pression)
The operational semantics of C(Ae1,...,Aen) (closed!) is the o "E" extends canonically to expressions from ®(X, V).

where L, B, X, I, {;y; are as in Def. 4.3, except that location invari L
N labelled transition system

ants in I are downward closed, and where

o C C L: committed locations, Te(C(Acs -, Acn) o (v+t)(z)=v(z)+t zeX,

e U C B: urgent channels, = (Conf,Time U {7}, AVL A€ e U {7}}, Cini) o (v+t)(v):=v(v),veV.

where » Effect of modification r € R(X, V) on v, denoted by v[r]:

e X=UL, X;and V =UL, Vi

o Conf = {{,v) | t; € Li,v: XUV — Time, v = Aj_, Iu(6)},

* Cini = {{lini, vini)} 0 Conf,

o Extended timeshift v +t, t € Time, applies to clocks only:

o V: a set of data variables,
o EC LxBpx®(X,V)xR(X,V)*xL: aset of directed edges
such that

5 (4, a, 0,7, l") € EAchan(e) €U = ¢ = true.
v(thint), if a =0,

v(a), otherwise

=]] = (Wr])lra]))l

o B , :
mam.mm (b, , 7, 0') from _On.m:ou_ £ to ' are labelled with an and the transition relation consists of transitions of the following
action a, a guard ¢, and a list 7 of reset operations. z oy

- s J

© We set v[(ry,..

6

Op. Sem. of Networks: Internal Transitions

o An internal transition (7,) > (7, 1) occurs if there is i € {1,...,n}
such that

o there is a T-edge (¢;, 7, 9,7, 1)) € E;,

cvEp
o 0 =10t;:=10),
o V=[],

o VL),
o () if {4 € Cy for some k € {1,...,n} then ¢; € C;.

Restricting Non-determinism: Urgent Location
P Q

z:=0 yi=0v:=1
W blv:=2 @ vi=3
@) aw\ Mﬂ

Property 1 Property 2 Property 3
Ow=1 VOQq = y<0|[VOPpAQqu =
@2y — y<0)

N (4 x x
N, q1 urgent v J v
£ N, q comm.
2 N, burgent s

Op. Sem. of Networks: Synchronisation Transitions

A synchronisation transition (Z.1/) 5 (7/,1/) occurs if there are
i,j € {1,...,n} with i # j such that

o there are edges (£;,b!, i, 75, (;) € E; and (£;,07, 5,7, 4}) € Ej,

. vEwing,
o 0 =11t;:=0)[t; =

o v =v[FlF)
o V' L(G) N(6),
o () if {; € Cy for some k € {1,...,n} then ¢; € C; or £ € Cj.

813
Restricting Non-determinism: Committed Location
®
x:=0
b?
Property 1 Property 2 Property 3
: Fow = VOQ.q = y<0 VOPpAQq =
x>y = y<0)
N v X X
= N, q urgent v v 4
,ym N, ¢ comm. X v v
2 N, b urgent s

Op. Sem. of Networks: Delay Transitions

« A delay transition (7,) % (7, +t) occurs if

o vt A (),

o (o) there are no i, j € {1
and (£5,b7, 05,75, 0;) € Bj,

o (&) thereis noi € {1,...,n} such that {; € C;.

n}and b e U with (6;,b!,¢;. 7. 0}) € E;

n 943
Restricting Non-determinism: Urgent Channel
®
x:=0 7
b?
Property 1 Property 2 Property 3
£ Jow=1[VOQq = y<0[VOPpAQq —
: (x2y = y<0))
N v X X
N, q1 urgent v v v
N, ¢ comm. X v v
N, b urgent v X v 13

Extended vs. Pure Timed Automata

Reachability Problems for Extended Timed Automata

14/23

1743

S5

Extended vs. Pure Timed Automata

A, = (L.C.B.U.X,V.I,E, lis)
(Lo, 0,7 0") € L x By x ®(X,V) x R(X,V)* x L
vs.
A= (L.B.X,I.E.ly)
(bo, Y 0') € ECLx By x ®(X)x2¥ x L

o A, is in fact (or specialises to) a pure timed automaton if

-
.
<
I

=

o for each 7" = (ry

), every r; is of the form x := 0 with z € X.

o I(0), € ®(X) is then a consequence of V = .

Recall

Theorem 4.33. [Location Reachability] The location reachal
problem for pure timed automata is decidable.

Theorem 4.34. [Constraint Reachability] The constraint reacha-
bility problem for pure timed automata is decidable.

* And what about tea ‘Wextended timed automata?

1843

Operational Semantics of Extended TA

Theorem 4.41. If Ay,..., A, specialise to pure timed au-
tomata, then the operational semantics of

C(Ay,..., An)
and
chanby, ..., by e (Ay || ... || An),
where {by,...,b,} =i, Bi, coincide, i.e

To(C(AL, An)) = T(chanby, .. by o (A

What About Extended Timed Automata?

Extended Timed Automata add the following features:
» Data-Variables

* As long as the domains of all variables in V' are finite, adding data
variables doesn't hurt.

 If they're infinite, we've got a problem (encode two-counter machine).

Structuring Facilities

o Don't hurt — they're merely abbreviations.

Restricting Non-determinism

© Restricting non-determ

m doesn't affect (or change) the configuration
space Conf.

o Restricting non-determinism only removes certain transitions, so makes
reachable part of the region automaton even smaller (not necessarily
strictly smaller).

15 - 2014-07-24

The Logic of Uppaal

Satisfaction of Uppaal-Logic by Configurations

o We define a satisfaction relation
(fo, o) to |= F
between time stamped configurations
(8, v0). to
of a network C(Ay,...,Ay) and formulae F' of the Uppaal logic.

o It is defined inductively as follows:

o (lo,vo),to = At iff ;= €
o (lo,vo)to = iff R FY
o (I, w0),to = —~term iff o, 15, f0 [Hem

o (Go, v0),to = termy A termy iff B, 0 & ¥ery, =12

20743

2343

Uppaal Fragment of Timed Computation Tree Logic

Consider N = C(Ay, .

e basic formula:

A,) over data variables V.

atom = Al | ¢

where £ € L; is a location and ¢ a constraint over X; and V.

configuration formulae:

term = atom | =term | termy A terma &

existential path formulae: M (“exists fi

§", “exists globally")

e-formula ::= 30 term | 30 term

universal path formulae: (“always fin; ‘always globall leads to")

a-formula ::= ¢ term | VO term | term; — terms

& o formulae:
& F e-formula | a-formula
d 21788
Satisfaction of Uppaal-Logic by Configurations
Exists finally:
o (fo.v0).to =30 term iff 3path £ of ' starting in (7o, v0). to
3t € Time, ((,v) € Conf :
to <tA (L) e&(t)A{L.V).t | term
Example: 30 ¢
i 24713

Configurations at Time t

 Recall: computation path (or path) starting in (fo, 1), fo:
mHAM?toYNoFAMrSYSBQ@.SY&&,

which is infinite or maximally finite.
© Given & and t € Time, we use &(t) to denote the set
{v) | 3ieNg: i<t <tin A= Av=vi+1—t}
of configurations at time ¢.

o Why is it a set?
o Can it be empty?

22/a3
Satisfaction of Uppaal-Logic by Configurations
Exists globally:
o (lo,w),to |= 30 term iff Ipath £ of N starting in (o, vo), to
vt € Time, ((,v) € Conf :
to<StA{Lv) €g(t) = (L)t
term
Example: 30 ¢
25/43

Satisfaction of Uppaal-Logic by Configurations Satisfaction of Uppaal-Logic by Configurations Satisfaction of Uppaal-Logic by Networks

o Always finally: Leads to: © We write N |= e-formula if and only if
B B o (fo,10), to |= termy —> terms iff Y path & of A starting in (7o, o), to - P
o (b, v0),to |= VO term iff (Co, o), to = 30 ~term vt € Time, (£,v) € Conf : for some (fo, vo) € Cini, {lo, 10), 0 = e-formula, @
P ~ to AMMN \v/ %Tvvwm &(t) and N = a-formula if and only if
« Always globally: Dle>Ves) A w)t = termy °)
vole=Ygy implies (£, v),t [= VO termy for all (€o,) € Cini, (€0, 10), 0 |= a-formula, 2)
o (fo,vo),to = VO term iff (fo, vo), to = 30 ~term Example: ©1 — ¢2 Fos vt where Cjy; are the initial configurations of 7. (\).
0, v0), to
. o If Cipi =0, (1) is a contradiction and (2) is a tautology.
o If Cini # 0, then
ALy | -
z H N = F if and only if (Cin;, Vini), 0 = F.
P1.7p2 L
g = A Q22 g
0.
i 2613 i : 27 ° 2815
Example Example Example
press?
(i)
x >3

o N =30 L.bright?

o N |= 30 L.bright?

o N = 30L.0fR
3 i e N VO Llight?
3 1 e N EVOL.bright = «>37
i e W Lobright — L.off?
i 2003 2013 i 29715

20140

15

Observer-based Automatic Verification of DC Properties
for TA

Testable DC Properties

30743

Model-Checking DC Properties with Uppaal

off

NG, £ 3¢ 0 baf
/N

©

15 - 2014-07-24

3143

Testability

Definition 6.1. A DC formula F'is called testable if an observer
(or test automaton (or monitor)) Ap exists such that for all net-
works N = C(Ay, ..., Ay) it holds that

NEF iff CA,..., A, Ap) = VO~ (Ap.qad)

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae. _7

Theorem 6.4. DC implementables are testable.

3343

~15 - 2014

Model-Checking DC Properties with Uppaal

o First Question: what is the “|=" here?
» Second Question: what kinds of DC formulae can we check with Uppaal?
o Clear: Not every DC formula.
(Otherwise contradicting undecidal
« Quite clear: F = ([off] or F' = -0 [light]
(Use Uppaal’s fragment of TCTL, something like ¥ off,
but not exactly (see later).)

o Maybe: F =0>5 = O[off]®

results.)

& o Not so clear: F = —{([bright] ; [light])

Untestable DC Formulae

“Whenever we observe a change from A to A at time ¢4,
the system has to produce a change from B to =B at some time tp € [ta,ta4 + 1]
and a change from C' to ~C at time £ + 1.

Sketch of Proof: Assume there is Ay such that, for all networks A/, we have

NEF iff C(AY,..., Ay Ar) = YO =(AF Gad)

Assume the number of clocks in A is n € Ny.

344

Untestable DC Formulae Cont’d

Consider the following time points:

o ta=1

ot i=tat gy fori=1
1 1 j =

ot € Jth+ 1~ gty th + L+ g [fori=1,...n + 1

with t, —tp #1for 1<i<n+ 1

Loan+1

Example: n =3

0 35/43
Testable DC Formulae
Theorem 6.4. DC implementables are testable.
o Initialisation: [TV [x]; true
« Sequencing: fa] — [FVm VeV
+ Progress:] < -]
« Synchronisation: [Al =2 [-n]
« Bounded Stability: [=n]; [m Al =4 [AVm VeV,

Sdetest

Unbounded Stal [~7]i[mAp]l—[mVm V- V]

Al oo frvm v vm]
[T Apl—so[mVm V.- V]

Bounded initial stability:
Unbounded initial stability:

Proof Sketch:
» For each implementable F', construct Ap.

o Prove that Ap is a test automaton. 3843

Untestable DC Formulae Cont’d ~ * N

T

15 - 201407

g

Example: n =3

1

iz Ti
3 qh3 Time

2
The shown interpretation Z satisfies assumption of property.

It has n + 1 candidates to satisfy commitment.

By choice of t{;, the commitment is not satisfied; so F" not satisfied.
Because Ay is a test automaton for I, is has a computation path to gpaq.

* Because n = 3, Ap can not save all 7+ 1 time points ;.

Thus there is 1 < ip < n such that all clocks of Af have a valuation which is not

. i 1 1

in 2 =15 + (= 4us1) agnsny) 36743

Proof of Theorem 6.4: Preliminaries

Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

ary step action.

=0
\@ step! °

Approach: have au;

Technically, replace each

by

3943

Untestable DC Formulae Cont’d *

Example: n =3

24 Sdctest -

iy Time

Because Ay is a test automaton for F', is has a computation path to gpag.

Thus there is 1 < iy < n such that
in 2 =t + (— 3

| clocks of A have a valuation which is not

)
n+1)’ I(n+1)

Modify the computation to Z' such that % := 5 + 1.

Then I’ |= F, but Ap reaches gjqq via the same path.

That is: Ap claims I’ (£ F.

Thus Ap is not a test automaton. Contradiction. 3743

Proof of Theorem 6.4: Sketch

0

o Example: [7] — [-7]

4 — Sdetest -

15 - 20140

true

step?, —m,y =0

step?,

step?,

4074

Counterexample Formulae

Definition 6.5.
» A counterexample formula (CE for short) is a DC formula of
the form:

true; ([m]ALE L) ;...; ([me] ALE Ii); true

where for 1 <i <k,

© ; are state assertions,
o I; are non-empty, and open, half-open, or closed time intervals
of the form

o (b,e) or [be) with b € Qf and e € Qf U {oo},
o (b,€] or [b,e] with b,e € Q.
(b,o0) and [b,00) denote unbounded sets.

o Let F be a DC formula. A DC formula F is called counterex-
ample formula for F if = F <= —(F¢g) holds.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time
Systems - Formal Specification and Automatic Verification. Cambridge
University Press.

4323

Counterexample Formulae

“15-

Definition 6.5.

* A counterexample formula (CE for short) is a DC formula of
the form:

true; ([m]ALE D) ;...; ([m] ALE) ; true

where for 1 <i <k,

T; are state assertions,

1I; are non-empty, and open, half-open, or closed time intervals
of the form

o (b,e) or [b,e) with b € Qf and e € Qf U {oo
o (b,e] or [b,e] with b,e € Q.

(b, o) and [b,00) denote unbounded sets.

o Let F be a DC formula. A DC formula Fpg is called counterex-
ample formula for F if |= F <= —(F¢g) holds.

4133

References

42

