Real-Time Systems

Lecture 15: Extended TA Cont'd, Uppaal Queries, Testable DC

2014-07-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Recall: Extended Timed Automata

Definition 4.39. An extended timed automaton is a structure

V: a set of data variables,

 $\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$

where L,B,X,I,ℓ_{im} are as in Def. 4.3, except that location invariants in I are downward closed, and where U ⊆ B: urgent channels, • $C \subseteq L$: committed locations,

• $E\subseteq L\times B_{!?}\times \Phi(X,V)\times R(X,V)^*\times L$: a set of directed edges

 $(\ell,\alpha,\varphi,\vec{r},\ell') \in E \wedge \mathrm{chan}(\alpha) \in U \implies \varphi = \mathit{true}.$

Edges $(\ell,\alpha,\varphi,\vec{r},\ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

Operational Semantics of Networks

Definition 4.40. Let $A_{c,i}=(L_i,C_i,B_i,V_i,X_i,V_i,I_i,E_i,\ell_{ini,i})$, $1\leq i\leq n$, be extended timed automata with pairwise disjoint sets of clocks X_i . The operational semantics of $C(A_{c,1},\ldots,A_{c,n})$ (closed)) is the labelled transition system $\mathcal{T}_e(\mathcal{C}(\mathcal{A}_{e,1},\ldots,\mathcal{A}_{e,n}))$ $= (Conf, \mathsf{Time} \cup \{\tau\}, \{ \overset{{}_{\sim}}{\rightarrow} | \ \lambda \in \mathsf{Time} \cup \{\tau\}\}, C_{ini})$

• $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap Conf$,

• $X = \bigcup_{i=1}^n X_i$ and $V = \bigcup_{i=1}^n V_i$.

 $\bullet \ \ Conf = \{\langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \to \mathsf{Time}, \ \nu \models \bigwedge_{k=1}^n I_k(\ell_k) \}.$

Contents & Goals

Decidability of the location reachability problem

region automaton & zones

Extended Timed Automata syntax

This Lecture:

 Where has the notion of "input action" and "output action" correspondences in the formal semantics? What's an urgent/committed location? What's the difference? Urgent channel? Educational Objectives: Capabilities for following tasks/questions.

 Can we use Uppaal to check whether a TA satisfies a DC formula? How can we relate TA and DC formulae? What's a bit tricky about that?

Extended TA semantics

The Logic of Uppaal
 Testable DC

Extended Timed Automata

Helpers: Extended Valuations and Timeshift

 $\bullet \ \ \operatorname{Now:} \ \nu: X \cup V \to \operatorname{Time} \cup \mathcal{D}(V)$

 \bullet Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression)

• " \models " extends canonically to expressions from $\Phi(X, V)$.

• Extended timeshift $\nu+t,\,t\in$ Time, applies to clocks only:

 $\bullet \ (\nu + t)(x) := \nu(x) + t, \, x \in X,$

• $(\nu + t)(v) := \nu(v), v \in V$.

Effect of modification r ∈ R(X, V) on ν, denoted by ν[r].

 $\nu[v:=\psi_{int}](a):=\begin{cases} \nu(\psi_{int}), \text{ if } a=v,\\ \nu(a), \text{ otherwise} \end{cases}$ $\nu[x:=0](a):=\begin{cases} 0, \text{ if } a=x,\\ \nu(a), \text{ otherwise} \end{cases}$

6/43

• We set $\nu[\langle r_1,\ldots,r_n\rangle]:=\nu[r_1]\ldots[r_n]=(((\nu[r_1])[r_2])\ldots)[r_n]$

Op. Sem. of Networks: Internal Transitions

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ such that
- there is a τ -edge $(\ell_i, \tau, \varphi, \vec{r}, \ell_i') \in E_i$
- $\begin{array}{c} \bullet \ \nu \models \varphi, \\ \\ \bullet \ \vec{\ell} = \vec{\ell} [\ell_i := \ell_i'], \end{array}$
- ν' = ν[r],
- $\nu' \models I_i(\ell'_i)$,
- (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \dots, n\}$ then $\ell_i \in C_i$.

Op. Sem. of Networks: Synchronisation Transitions

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \stackrel{\tau}{\rightarrow} \langle \vec{\ell}, \nu' \rangle$ occurs if there are $i,j \in \{1,\dots,n\}$ with $i \neq j$ such that
- there are edges $(\ell_i,b!,\varphi_i,\vec{r_i},\ell_i')\in E_i$ and $(\ell_j,b?,\varphi_j,\vec{r_j},\ell_j')\in E_j$.

- $\vec{\ell}' = \vec{\ell}[\ell_i := \ell'_i][\ell_j := \ell'_j]$,
- ν' = ν[r̄_i][r̄_j],
- $\nu' \models I_i(\ell'_i) \wedge I_j(\ell'_j)$, • (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \dots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

Restricting Non-determinism: Committed Location

Restricting Non-determinism: Urgent Location

Property 1 Property 2 Property 3 $\exists \lozenge w = 1 \quad \forall \square \ Q. q_1 \implies y \le 0 \quad \forall \square (P. p_1 \land Q. q_1 \implies y \le 0))$ $(x \ge y \implies y \le 0)$

Op. Sem. of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
- $\nu + t \models \bigwedge_{k=1}^{n} I_k(\ell_k)$,
- () there are no $i,j\in\{1,\dots,n\}$ and $b\in U$ with $(\ell_i,b!,\varphi_i,\vec{r_i},\ell'_i)\in E_i$ and $(\ell_j,b?,\varphi_j,\vec{r_j},\ell'_j)\in E_j$,
- (\clubsuit) there is no $i \in \{1, \dots, n\}$ such that $\ell_i \in C_i$.

Restricting Non-determinism: Urgent Channel

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\$$

C 13/	×	ζ.	\mathcal{N} , b urgent
•	<	×	\mathcal{N} , q_1 comm.
•	V	•	\mathcal{N} , q_1 urgent
×	×	•	N
$(x \ge y \implies y \le 0))$			
$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$	$\forall \square Q.q_1 \implies y \leq 0$	$\exists \lozenge w = 1$	
Property 3	Property 2	Property 1	

Extended vs. Pure Timed Automata

14/43

17/43

And what about tea Wextended timed automata?

18/43

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for pure timed automata is decidable.

Reachability Problems for Extended Timed Automata

Extended vs. Pure Timed Automata

$$\begin{split} \mathcal{A}_e &= (L, C, B, U, X, V, I, E, \ell_{ini}) \\ (\ell, \alpha, \varphi, \vec{r}, \ell') &\in L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L \end{split}$$

$$\begin{split} \mathcal{A} &= (L, B, X, I, E, \ell_{im}) \\ (\ell, \alpha, \varphi, Y, \ell') &\in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L \end{split}$$

- ullet \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
- $C = \emptyset$,
- $U = \emptyset$, $V = \emptyset$,
- for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.

• $I(\ell), \varphi \in \Phi(X)$ is then a consequence of $V = \emptyset$.

15/43

Operational Semantics of Extended TA

Theorem 4.41. If $\mathcal{A}_1,\dots,\mathcal{A}_n$ specialise to pure timed automata, then the operational semantics of

 $C(A_1, \ldots, A_n)$

where $\{b_1,\ldots,b_m\}=\bigcup_{i=1}^n B_i$, coincide, i.e. $\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n),$

 $\mathcal{T}_{\varepsilon}(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)) = \mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n)).$

16/43

What About Extended Timed Automata?

Recall

Theorem 4.33. [Location Reachability] The location reachability problem for pure timed automata is decidable.

Extended Timed Automata add the following features:

- Data-Variables
- As long as the domains of all variables in V are finite, adding data variables doesn't hurt.
 If they're infinite, we've got a problem (encode two-counter machine).
- Structuring Facilities
- Don't hurt they're merely abbreviations.
- Restricting Non-determinism
- \bullet Restricting non-determinism doesn't affect (or change) the configuration space Conf.
- Restricting non-determinism only removes certain transitions, so makes reachable part of the region automaton even smaller (not necessarily strictly smaller).

The Logic of Uppaal

Satisfaction of Uppaal-Logic by Configurations

Satisfaction of Uppaal-Logic by Configurations

 $\begin{array}{c} \bullet \ \langle \vec{l}_0, \nu_0 \rangle, t_0 \models \exists \lozenge \ term & \text{iff} \ \exists \mathsf{path} \, \xi \ \mathsf{of} \ \mathcal{N} \ \mathsf{starting} \ \mathsf{in} \ \langle \vec{l}_0, \nu_0 \rangle, t_0 \\ \exists t \in \mathsf{Time}_i \langle \vec{l}_i, \nu \rangle \in \mathit{Conf} \ : \\ t_0 \leq t \land \langle \vec{l}_i, \nu \rangle \in \xi(t) \land \langle \vec{l}_i, \nu \rangle, t \models \ term \end{array}$

```
    We define a satisfaction relation
```

between time stamped configurations

iff 6; = 6

18 F4

• $\langle \bar{\ell}_0, \nu_0 \rangle, t_0 \models \neg term$ iff くる, おった を ten

• $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models term_1 \wedge term_2 \text{ iff } \langle \vec{\ell}_0, \nu_0 \rangle, \xi \models \nu_0, \quad i=1,2$

 $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models F$

 $\langle \vec{\ell_0}, \nu_0 \rangle, t_0$

of a network $\mathcal{C}(A_1,\ldots,A_n)$ and formulae F of the Uppaal logic.

It is defined inductively as follows:

• $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models A_i.\ell$

• $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \varphi$

23/43

Uppaal Fragment of Timed Computation Tree Logic

Configurations at Time t

- Recall: computation path (or path) starting in $\langle \vec{\ell_0}, \nu_0 \rangle, t_0$:

 $\xi = \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \vec{\ell}_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \vec{\ell}_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$

• Given ξ and $t \in \operatorname{Time}$, we use $\xi(t)$ to denote the set

 $\{\langle \vec{\ell}, \nu \rangle \mid \exists \, i \in \mathbb{N}_0 : t_i \leq t \leq t_{i+1} \wedge \vec{\ell} = \vec{\ell}_i \wedge \nu = \nu_i + t - t_i \}.$

which is infinite or maximally finite.

Consider $\mathcal{N}=\mathcal{C}(\mathcal{A}_1,\dots,\mathcal{A}_n)$ over data variables V.

basic formula:

 $atom ::= A_i.\ell \mid \varphi$

 configuration formulae: where $\ell \in L_i$ is a location and φ a constraint over X_i and V .

existential path formulae:

e-formula ::= $\exists \lozenge term \mid \exists \Box term$

20/43

 $a\text{-}formula ::= \forall \lozenge \ term \ | \ \forall \Box \ term \ | \ term_1 \longrightarrow term_2$

 $F ::= e ext{-}formula \mid a ext{-}formula$

 $\begin{array}{ll} \mathit{term} ::= \mathit{atom} \mid \neg \mathit{term} \mid \mathit{term}_1 \land \mathit{term}_2 \nearrow \mathsf{G} \\ & \vdash \\ \mathsf{formulae}: & \vdash \\ \mathsf{f} & ("exists finally", "exists globally") \end{array}$

universal path formulae: ("always finally", "always globally", "leads to")

Why is it a set?Can it be empty?

of configurations at time t.

22/43

Satisfaction of Uppaal-Logic by Configurations

Exists globally:

 $\begin{array}{c} \circ \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \exists \Box \ term & \text{iff} \ \exists \mathsf{path} \ \xi \ \mathsf{of} \ \mathcal{N} \ \mathsf{starting} \ \mathsf{in} \ \langle \vec{\ell_t}, \nu_0 \rangle, t_0 \\ \forall t \in \mathsf{Time}, \langle \vec{\ell_t}, \nu \rangle \in \mathit{Conf} \ ; \\ t_0 \leq t \wedge \langle \vec{\ell_t}, \nu \rangle \in \xi(t) \implies \langle \vec{\ell_t}, \nu \rangle, t \models \\ term & \end{array}$

Satisfaction of Uppaal-Logic by Configurations

Always finally:

 $\bullet \ \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \forall \Diamond \ term \qquad \text{iff} \ \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \not\models \exists \Box \neg term$

Always globally:

 $\bullet \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \forall \Box \ term \qquad \text{iff} \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \not\models \exists \Diamond \neg term$

Satisfaction of Uppaal-Logic by Configurations

 $\bullet \ \, \langle \vec{l}_0, \nu_0 \rangle, t_0 \models term_1 \longrightarrow term_2 \ \, \text{iff} \quad \forall \mathsf{path} \ \, \xi \ \, \text{of} \ \, \mathcal{N} \ \, \text{starting in} \ \, \langle \vec{l}_0, \nu_0 \rangle, t_0 \\ \forall t \in \mathsf{Time}_i(\vec{l}_i, \nu) \in \mathsf{Conf}: \\ \forall t \in \mathsf{Time}_i(\vec{l}_i, \nu) \in \mathsf{Conf}: \\ \forall t_0 \in \mathsf{tr} \setminus \langle \vec{l}_i, \nu \rangle \in \xi(t) \\ \forall \mathsf{D}(\mathsf{P} \Rightarrow \mathsf{VP} \mathsf{P}) \\ \qquad \qquad \qquad \qquad \wedge \langle \vec{l}_i, \nu \rangle, t \models term_1 \\ \qquad \qquad \qquad \qquad \qquad \wedge \langle \vec{l}_i, \nu \rangle, t \models \forall \forall term_2 \\ \\ \text{implies } \langle \vec{l}_i, \nu \rangle, t \models \forall \forall term_2 \\ \\ \end{pmatrix}$

Example: $\varphi_1 \longrightarrow \varphi_2$

26/43

29/43

Example

Example

29/43

Satisfaction of Uppaal-Logic by Networks

 \bullet We write $\mathcal{N} \models e\text{-}formula$ if and only if

for some $\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models e\text{-}formula$

Ξ)

and $\mathcal{N} \models a ext{-}formula$ if and only if

for all $\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models a\text{-}formula,$

(2)

where C_{ini} are the initial configurations of $\mathcal{T}_e(\mathcal{N})$.

• If $C_{ini} \neq \emptyset$, then • If $C_{ini}=\emptyset$, (1) is a contradiction and (2) is a tautology.

 $\mathcal{N}\models F$ if and only if $\langle \vec{\ell}_{ini}, \nu_{ini} \rangle, 0 \models F$.

28/43

Example

- N |= ∃◊ L.bright?
- N |= ∃□ L.bright?
- $\mathcal{N} \models \exists \Box \mathcal{L}.off?$
- 5 2014-07-24 $\mathcal{N} \models \forall \Box \mathcal{L}.bright \implies x \geq 3?$ $\mathcal{N} \models \mathcal{L}.bright \longrightarrow \mathcal{L}.off?$

Model-Checking DC Properties with Uppaal

M DOE 4 DIIN

Testability

Definition 6.1. A DC formula F is called testable if an observer (or test automaton (or monitor)) A_F exists such that for all networks $\mathcal{N}=\mathcal{C}(A_1,\dots,A_n)$ it holds that

 $\mathcal{N} \models F \quad \text{iff} \quad \mathcal{C}(\mathcal{A}_1', \dots, \mathcal{A}_n', \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Otherwise it's called untestable.

Testable DC Properties

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

32/43

33/43

Model-Checking DC Properties with Uppaal

- First Question: what is the "\=" here?
- Second Question: what kinds of DC formulae can we check with Uppaal?
- Clear: Not every DC formula.
 (Otherwise contradicting undecidability results.)

- Quite clear: F = □[off] or F = ¬◊[light] (Use Uppaal's fragment of TCTL, something like ∀□ off, but not exactly (see later).)
- Maybe: $F=\ell>5 \implies \lozenge[\mathsf{off}]^5$ Not so clear: $F=\neg \lozenge([\mathsf{bright}] : \lceil \mathsf{light} \rceil)$

31/43

Untestable DC Formulae

"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is \mathcal{A}_F such that, for all networks \mathcal{N} , we have

$$\mathcal{N} \models F \quad \text{iff} \quad \mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$$

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.

Untestable DC Formulae Cont'd

Consider the following time points:

- \bullet $t_A := 1$
- $\begin{array}{l} \bullet \ t_B^i := t_A + \frac{2i-1}{2(n+1)} \ \text{for} \ i = 1, \dots, n+1 \\ \bullet \ t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[\ \text{for} \ i = 1, \dots, n+1 \end{array}$ with $t_C^i - t_B^i \neq 1$ for $1 \leq i \leq n+1$.

Example: n = 3

35/43

Untestable DC Formulae Cont'd

Untestable DC Formulae Cont'd

Example: n=3

Example: n = 3

- \bullet The shown interpretation ${\mathcal I}$ satisfies assumption of property.
- It has n + 1 candidates to satisfy commitment.
- By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- Because \mathcal{A}_F is a test automaton for F, is has a computation path to q_{bad} .
- Because n = 3, A_F can not save all n + 1 time points tⁱ_B.
- Thus there is $1\leq i_0\leq n$ such that all docks of A_F have a valuation which is not in $2-t_B^n+(-4(n+1),4(n+1))$

 $\bullet \quad \text{Then } \mathcal{I}' \models F, \text{ but } \mathcal{A}_F \text{ reaches } q_{bold} \text{ via the same path.} \\ \bullet \quad \text{That is } \mathcal{A}_F \text{ claims } \mathcal{I} \not\models F. \\ ^{-1} \bullet \quad \text{Thus } \mathcal{A}_F \text{ is not a test automaton. } \text{Contradiction.}$

37/43

• Modify the computation to \mathcal{I}' such that $t_C^{i_0} := t_B^{i_0} + 1$.

• Because A_F is a test automaton for F, is has a computation path to q_{bad} .
• Thus there is $1 \leq q_0 \leq n$ such that all clocks of A_F have a valuation which is not in $2 - t \frac{p_0}{n} + (-\frac{q_0 + p_1}{q_0 + p_1}, \frac{q_0 + p_2}{q_0 + p_2})$

 $1 \ t_B^1 \quad t_B^2 \quad t_B^3 \quad t_B^4 \ 2 t_C^1$

 t_C^3 t_C^4 3 Time

Proof of Theorem 6.4: Preliminaries

Testable DC Formulae

Theorem 6.4. DC implementables are testable.

Initialisation:Sequencing:

 Bounded Stability Progress:

 $\lceil \neg \pi \rceil$; $\lceil \pi \land \varphi \rceil \stackrel{\leq \theta}{\Longrightarrow} \lceil \pi \lor \pi_1 \lor \cdots \lor \pi_n \rceil$ $\lceil \neg \pi \rceil \, ; \, \lceil \pi \wedge \varphi \rceil \, {\longrightarrow} \lceil \pi \vee \pi_1 \vee \dots \vee \pi_n \rceil$

 $[\pi] \longrightarrow [\pi \vee \pi_1 \vee \dots \vee \pi_n]$ $[\pi] \stackrel{\theta}{\longrightarrow} [\neg \pi]$ $[\pi \land \varphi] \xrightarrow{\theta} [\neg \pi]$

[] ∨ [π]; true

Note: DC does not refer to communication between TA in the network, but only to data variables and locations.

$$\Diamond(\lceil v=0\rceil\,;\,\lceil v=1\rceil)$$

- Recall: transitions of TA are only triggered by syncronisation, not by changes of data-variables.
- Approach: have auxiliary step action.
- Technically, replace each

 $\stackrel{>}{\sim}$ • For each implementable F, construct \mathcal{A}_F . $\stackrel{>}{\sim}$ • Prove that \mathcal{A}_F is a test automaton.

38/43

Proof Sketch: Unbounded initial stability: Bounded initial stability: Unbounded Stability: Synchronisation:

39/43

Proof of Theorem 6.4: Sketch

• Example: $[\pi] \xrightarrow{\theta} [\neg \pi]$

Counterexample Formulae

 A counterexample formula (CE for short) is a DC formula of the form: Definition 6.5. \bullet I_{i} are non-empty, and open, half-open, or closed time intervals of the form where for $1 \le i \le k$, π_i are state assertions, $\begin{array}{l} \bullet \ (b,e) \ {\rm or} \ [b,e) \ {\rm with} \ b \in \mathbb{Q}_0^+ \ {\rm and} \ e \in \mathbb{Q}_0^+ \ \dot{\cup} \ \{\infty\}, \\ \bullet \ (b,e] \ {\rm or} \ [b,e] \ {\rm with} \ b,e \in \mathbb{Q}_0^+. \end{array}$ true ; ([π_1] $\land \ell \in I_1$) ; . . . ; ([π_k] $\land \ell \in I_k$) ; true

41/43

 \bullet Let F be a DC formula . A DC formula F_{CE} is called counterexample formula for F if $\models F\iff \neg(F_{CE})$ holds.

 (b,∞) and $[b,\infty)$ denote unbounded sets.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

43/43

Counterexample Formulae

Definition 6.5.

A counterexample formula (CE for short) is a DC formula of the form:

true; $(\lceil \pi_1 \rceil \land \ell \in I_1)$; ...; $(\lceil \pi_k \rceil \land \ell \in I_k)$; true

 π_i are state assertions, where for $1 \le i \le k$,

• I_i are non-empty, and open, half-open, or closed time intervals of the form $\bullet (b,e) \text{ or } [b,e) \text{ with } b \in \mathbb{Q}_0^+ \text{ and } e \in \mathbb{Q}_0^+ \cup \{\infty\}, \\ \bullet (b,e) \text{ or } [b,e] \text{ with } b,e \in \mathbb{Q}_0^+.$

• Let F be a DC formula . A DC formula F_{CE} is called counterexample formula for F if $\models F \iff \neg(F_{CE})$ holds. (b,∞) and $[b,\infty)$ denote unbounded sets.

41/43

References