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Last Lecture:
e Decidability of the location reachability problem:

e region automaton & zones

o Extended Timed Automata syntax
This Lecture:

e Educational Objectives: Capabilities for following tasks/questions.

e What's an urgent/committed location? What's the difference? Urgent channel?

e Where has the notion of “input action” and “output action” correspondences in
the formal semantics?

e How can we relate TA and DC formulae? What's a bit tricky about that?

e Can we use Uppaal to check whether a TA satisfies a DC formula?

e Content:

e Extended TA semantics
e The Logic of Uppaal
e Testable DC
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Extended Timed Automata
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Recall: Extended Timed Automata
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L

Definition 4.39. An extended timed automaton is a structure

Ae — (Lac’?B?U?X?V?[?E?gini)

where L, B, X, I, /¢;,; are as in Def. 4.3, except that location invari-
ants in I are downward closed, and where

C C L: committed locations,
U C B: urgent channels,

V. a set of data variables,

ECLxBrx®(X,V)xR(X,V)*xL: aset of directed edges
such that

(4, a, 0,7, ¢") € ENchan(a) e U = ¢ = true.

Edges (¢, a, ¢, 7, ¢") from location ¢ to ¢’ are labelled with an
action o, a guard ¢, and a list 7 of reset operations.
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Operational Semantics of Networks
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e h

Definition 4.40. Let -Ae,i = (Lz‘, Ci, B;,U;, X;, Vi, I, B, gim,i);
1 <1 <n, be extended timed automata with pairwise disjoint sets

of clocks Xj.
The operational semantics of C(Ac1,...,Aepn) (closed!) is the

labelled transition system

Te(C(Ae1s- -y Aen))
= (Conf, Time U {7}, {| A € Time U {71}, Cini)

where
o X = U?:l X,L and V = U?:l ‘[i,
PY COnf — {<€_; 1/> ’ 87, - Li,l/ XUV — Time, 1% |: /\Zzl Ik<€k)};

—

o Cini = {Wini,Vini)} N Conf,

and the transition relation consists of transitions of the following

three types.
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Helpers: Extended Valuations and Timeshift

e Now: v: XUV — TimeUD(V)
e Canonically extends to v : (V') — D (valuation of expression).

e “E" extends canonically to expressions from ®(X, V).

o Extended timeshift v + ¢, t € Time, applies to clocks only:

o (v+t)(x):=v(x)+t xelX,
o (v41t)(v):=v(v),velV.

o Effect of modification r € R(X,V) on v, denoted by v|r|:

0, if a ==,

vz :=0|(a) := {

v(a), otherwise

v(Vint), if a =,
v(a), otherwise

Vv = Vi (a) = {

o Weset v[{ry,...,rp)| :=v[ri]...[rn] = (V[r])[r2]) ... )[ral. 625
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Op. Sem. of Networks: Internal Transitions
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e An internal transition (¢,v) = (¢', V) occurs if there is i € {1,...,n}
such that

o there is a T-edge (¢;, 7, ¢, 7, 0.) € Ej,

° Vv
o U =1t; := 1),
o v = vlf

o V' | Li(£),
o (&) if ) € Cf for some k € {1,...,n} then ¢; € C;.
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Op. Sem. of Networks: Synchronisation Transitions
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o A synchronisation transition (7,1} = (¢, 1/} occurs if there are
i,7 € {1,...,n} with ¢ = j such that
o there are edges (¢;,b!, v;, 7, ¢;) € E; and (Ej,b?,gpj,f}-,%) c Ej,
° Vi Ny
o ' =Lt = L[l = L],
o v = [l
o V= Li(6G) NI (L),
o (&) if £, € C for some k € {1,...,n} then ¢; € C; or ¢; € Cj.
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Op. Sem. of Networks: Delay Transitions

— —

e A delay transition (/, ) LN (¢,v +t) occurs if

o v+t Npoy I(lr),
o (&) there are noi,j € {1,...,n} and b € U with (¢;,b!, p;, 75, 0,) € E;
and (65,07, 05,75. 1) € E

o (&) thereisnoi € {1,...,n} such that ¢; € Cj.
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Restricting Non-determinism: Urgent Location
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R

w ="

Property 1 Property 2 Property 3
Ww=1 |VOQ.qy = y <0 |VUP.p NQ.q1 =
(z >y = y<0)
N v X X
N, q1 urgent v J v
N, ¢ comm.
N, b urgent
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Restricting Non-determinism: Committed Location
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R

Property 1 Property 2 Property 3
Ww=1 |VOQ.qy = y <0 |VUP.p NQ.q1 =
(x >y = y<0))
N v X X
N, ¢ urgent 4 v 4
N, ¢1 comm. X Vv v
N, b urgent
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Restricting Non-determinism: Urgent Channel
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R

Property 1 Property 2 Property 3
Ww=1 |VOQ.qy = y <0 |VUP.p NQ.q1 =
(x >y = y<0))
N v/ X X
N, ¢ urgent 4 v 4
N, ¢ comm. X v 4
N, b urgent v X v
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Extended vs. Pure Timed Automata

14/43



Extended vs. Pure Timed Automata
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Ao = (L,C,B,U,X,V,I,E, {;;)
(l,a, 0,7 0") € L X By x (X, V) x R(X,V)*x L
VS.
A= (L,B,X,I,E, (i)
(U0, 0, Y, ") € ECL x By x ®(X) x 2% x L

o A, is in fact (or specialises to) a pure timed automaton if

C =0,
U=1,
V=10,
for each ¥ = (ry,...,r,), every r; is of the form x := 0 with z € X.

I(£),p € ®(X) is then a consequence of V = 0).
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Operational Semantics of Extended TA
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f
Theorem 4.41. If Ay, ..
tomata, then the operational semantics of

C(A]_, o o ,An)
and
chanby,....bp e (A1 ] ...] An),
where {b1,...,bm} = UJ;—; Bi, coincide, i.e.

%(C(Al, c . ,An)) = T(chan bl, .. .,bm o (./41 H “ e H An))

L

., A, specialise to pure timed au-

=

J
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Reachability Problems for Extended Timed Automata
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Recall

Theorem 4.33. [Location Reachability] The location reachability
problem for pure timed automata is decidable.

Theorem 4.34. [Constraint Reachability] The constraint reacha-
bility problem for pure timed automata is decidable.

e And what about tea "Wextended timed automata?
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What About Extended Timed Automata?

Extended Timed Automata add the following features:

e Data-Variables

e As long as the domains of all variables in V' are finite, adding data
variables doesn't hurt.

o If they're infinite, we've got a problem (encode two-counter machine).

e Structuring Facilities

e Don't hurt — they're merely abbreviations.

e Restricting Non-determinism

e Restricting non-determinism doesn't affect (or change) the configuration
space Conf.

e Restricting non-determinism only removes certain transitions, so makes
reachable part of the region automaton even smaller (not necessarily
strictly smaller).
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The Logic of Uppaal
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Uppaal Fragment of Timed Computation Tree Logic
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Consider N'=C(Aq,...,Ay,) over data variables V.

basic formula:
atom == A; .0 | ¢

where ¢ € L; is a location and ¢ a constraint over X; and V.

configuration formulae:

term = atom | ~term | termy A termg G
existential path formulae: * (“exists fipatly”, “exists globally”)
e-formula := 30 term | 300 term
universal path formulae: (“always finally”, “always globally”, “leads to")
a-formula ::= VO term | VU term | term; — terms
formulae:
F ::= e-formula | a-formula
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Configurations at Time t
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e Recall: computation path (or path) starting in (K_E),I/O>,t0:

= A Ao 7 A
&= (lo, o), to = (b1,v1),t1 = (ba, 1)t = ...

which is infinite or maximally finite.

e Given ¢ and t € Time, we use £(t) to denote the set

{<€_;V>‘EIiEINOZtiStéti+1/\g:@/\yzyi—l—t—ti}.

of configurations at time ¢.

e Why is it a set?
e Can it be empty?
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Satisfaction of Uppaal-Logic by Configurations
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o We define a satisfaction relation
(lo, v0), to = F
between time stamped configurations
(€0, v0), to
of a network C(Aj1,...,A,) and formulae F' of the Uppaal logic.

o It is defined inductively as follows:

o (0o, o), to = Ak iff ;= €

o (lo,n0),t0 = ¢ iff 1, Y

o (lo,10),t0 |= —term iff Lo, >, fo [ Hem

o (Lo, v0), to = terma A termy iff b, U & I=1ers, (=12
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Satisfaction of Uppaal-Logic by Configurations
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Exists finally:

o (Z), 1), to = 30 term iff  dpath & of N_}starting in (E_E), 1), to
3t € Time, (¢,v) € Conf :
to <tN{lvyel(t)N{lv),t = term

Example: 30 ¢

24/43



Satisfaction of Uppaal-Logic by Configurations
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Exists globally:
o (Z), 1), to = d0 term iff Jpath £ of A/ starting in (E_E), 1), to

Vi e Time,_)(é_; v) € Conf :
to <tA(lv) €&(t) = (L)t

term
Example: dlp
(o, v0), to
B4
A1 Ao
2
AlL1
'
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Satisfaction of Uppaal-Logic by Configurations
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e Always finally:
o <€_E), 1), to = YO term iff <€_E), V), to = 0 —term
e Always globally:

o (0o, o), to = VO term iff (Lo, v0), to = 3O ~term
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Satisfaction of Uppaal-Logic by Configurations
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Leads to:

o <Z),VQ>,t0 = termy1 — termsy iff Vpath & of NV starting in <€_£),V0>,t0
Vt € Time, ((,v) € Conf :
P ~ to <t A (L v) €&(D)
= Vda ) Al v),t = termy
vole ¢ implies (¢, v),t = VYO terms

Example: o1 — 9

<€_E)7 V0>7t0
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Satisfaction of Uppaal-Logic by Networks

o We write N |= e-formula if and only if
for some (Lo, 1) € Cini, (o, 1), 0 = e-formula,
and NV = a-formula if and only if
for all {0y, v0) € Cini, (o, 1), 0 = a-formula,

where C;,; are the initial configurations of 7.(\N).

o If Cini =0, (1) is a contradiction and (2) is a tautology.

o If Cipi # 0, then

N = F if and only if (€3, Vi), 0 = F.
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(1)

(2)
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Example
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Example
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Example
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— 3O L. bright?

— d[1L.bright?

— 31 L.off?

= VO L.light?

— VU L.bright — = > 37

— L.bright — L.off?
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Observer-based Automatic Verification of DC Properties
for TA

30/43



Model-Checking DC Properties with Uppaal
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Model-Checking DC Properties with Uppaal

o First Question: what is the “=" here?
e Second Question: what kinds of DC formulae can we check with Uppaal?

e Clear: Not every DC formula.
(Otherwise contradicting undecidability results.)

e Quite clear: F =[Joff| or FF = ={|light]
(Use Uppaal's fragment of TCTL, something like V[ off,
but not exactly (see later).)

o Maybe: F=/>5 = {[off]®
o Not so clear: F' = ={([bright] ; [light])
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lestable DC Properties
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lestability
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\\

Definition 6.1. A DC formula F' is called testable if an observer
(or test automaton (or monitor)) Ap exists such that for all net-

works A" = C(A4,...,A,) it holds that
NEF iff C(A,...,A Ar) EVO-(Ar.qq)

Otherwise it's called untestable.

\

.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.
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Untestable DC Formulae
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A —A
AF-- -
I\ [-B
BFr—-————- Sl A
C -C
C r————————- - ——— =+ — —

“Whenever we observe a change from A to —A at time t4,
the system has to produce a change from B to =B at some time tg € [ta,t4 + 1]
and a change from C' to —=C' at time tg + 1.

Sketch of Proof: Assume there is Ay such that, for all networks A, we have
N |: F Iff C( /1,,./4;1,/4}7’) |: VD _‘<AF-Qbad)

Assume the number of clocks in Ar is n € INy.

34/43



Untestable DC Formulae Cont’d
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Consider the following time points:

o ty:=1

o th=ta+ g fori=1,...,n+1

o to €t +1— gyt + 1+ g L fori=1,...

Withtg—t%#lforlgzgn—l—l.

Example: n =3

; T
tﬁé 3 ime
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Untestable DC Formulae Cont’d [ Spio
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0
Brr————- +—-——- 4+~ - — — — — -
Example: n = 3 Ol S
1 —
Ar :
0
B |
v
0
1 .
Cr
0
0 1ty 3 6 th2tL, L t3, i3 Time

e The shown interpretation Z satisfies assumption of property.
e It has n + 1 candidates to satisfy commitment.
o By choice of %, the commitment is not satisfied; so F' not satisfied.

o Because Ap is a test automaton for F', is has a computation path to ¢paq.

o Because n = 3, Ar can not save all n + 1 time points t5.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— ey 0Dy
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Untestable DC Formulae Cont’d *[ (e .
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Example: n = 3 Ol S

1 —

Ar :

0

B |

v

0

1 .

Cz

0
0 1 t}g tQB t?jg t‘}g 27% t2c t?(’; t‘é3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

: i 1 1
in2—tg + (1m0 30 D)

e Modify the computation to Z’ such that t’g = tiBO + 1.

e Then I’ = F, but A reaches qpqq Vvia the same path.

o Thatis: Ap claims Z' |~ F.

o Thus Ap is not a test automaton. Contradiction. 37/43



Testable DC Formulae
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Theorem 6.4. DC implementables are testable.

e Initialisation: |V [7]; true
e Sequencing: (7] — [TV TL Ve Vg,
e Progress: 7] AN [ =]
e Synchronisation: [T A @] AN ||
e Bounded Stability: =] [T A e =% v T Vo Vo,
e Unbounded Stability: =] [m Ap|— TV T V-V,
e Bounded initial stability: [T A @] io TV Ve Vg,
e Unbounded initial stability: [T A pl—ro[TVTLV -V,

Proof Sketch:

e For each implementable F', construct Apg.

e Prove that Ag is a test automaton. 3843



Proof of Theorem 6.4: Preliminaries

— 15 — 2014-07-24 — Sdctest —

e Note: DC does not refer to communication between TA in the network,
but only to data variables and locations.

Example:

e Recall: transitions of TA are only triggered by syncronisation, not by
changes of data-variables.

e Approach: have auxiliary step action.

=0

__— step!

Technically, replace each
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Proof of Theorem 6.4: Sketch
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o Example: [7] -2 [—n]

/‘

step?

true

step?, ~m,y =0

— [/ 92

?
step?, T y <0
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Counterexample Formulae
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Definition 6.5.
e A counterexample formula (CE for short) is a DC formula of
the form:
true; (| ALeTy);...; ([mx| N E Iy) ; true

where for 1 <1 < k,

e 7; are state assertions,

e I, are non-empty, and open, half-open, or closed time intervals
of the form

o (b,e) or [b,e) with b € QF and e € QF U {oo},
o (b,e] or [b,e] with b,e € Q.

(b, 00) and [b, o0) denote unbounded sets.

o Let F' be a DC formula. A DC formula F¢f is called counterex-

ample formula for F' if = F <= —(F¢g) holds.

g J

41/43



Counterexample Formulae
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Definition 6.5.
e A counterexample formula (CE for short) is a DC formula of
the form:
true; (| ALeTy);...; ([mx| N E Iy) ; true

where for 1 <1 < k,

e 7; are state assertions,

e I, are non-empty, and open, half-open, or closed time intervals
of the form

o (b,e) or [b,e) with b € QF and e € QF U {oo},
o (b,e] or [b,e] with b,e € Q.

(b, 00) and [b, o0) denote unbounded sets.

o Let F' be a DC formula. A DC formula F¢f is called counterex-

ample formula for F' if = F <= —(F¢g) holds.

g J
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