15 - 2014-07-24 - main -

Real-Time Systems

Lecture 15: Extended TA Cont'd, Uppaal Queries, Testable DC

2014-07-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

5 - 2014-07-24 - Sprelim -

Contents & Goals

Last Lecture:

- Decidability of the location reachability problem:
 - region automaton & zones
- Extended Timed Automata syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What's an urgent/committed location? What's the difference? Urgent channel?
 - Where has the notion of "input action" and "output action" correspondences in the formal semantics?
 - How can we relate TA and DC formulae? What's a bit tricky about that?
 - Can we use Uppaal to check whether a TA satisfies a DC formula?

Content:

- Extended TA semantics
- The Logic of Uppaal
- Testable DC

Extended Timed Automata

Recall: Extended Timed Automata

Definition 4.39. An extended timed automaton is a structure

$$\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$$

where L, B, X, I, ℓ_{ini} are as in Def. 4.3, except that location invariants in I are downward closed, and where

- $C \subseteq L$: committed locations,
- $U \subseteq B$: urgent channels,
- V: a set of data variables,
- $E \subseteq L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L$: a set of **directed edges** such that

$$(\ell, \alpha, \varphi, \vec{r}, \ell') \in E \wedge \operatorname{chan}(\alpha) \in U \implies \varphi = true.$$

Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

Operational Semantics of Networks

Definition 4.40. Let $A_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i})$, $1 \le i \le n$, be extended timed automata with pairwise disjoint sets of clocks X_i .

The operational semantics of $\mathcal{C}(\mathcal{A}_{e,1},\ldots,\mathcal{A}_{e,n})$ (closed!) is the labelled transition system

$$\mathcal{T}_{e}(\mathcal{C}(\mathcal{A}_{e,1},\ldots,\mathcal{A}_{e,n}))$$

$$= (Conf,\mathsf{Time} \cup \{\tau\},\{\overset{\lambda}{\rightarrow}|\ \lambda\in\mathsf{Time} \cup \{\tau\}\},C_{ini})$$

where

- $X = \bigcup_{i=1}^n X_i$ and $V = \bigcup_{i=1}^n V_i$,
- $Conf = \{\langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \to \mathsf{Time}, \nu \models \bigwedge_{k=1}^n I_k(\ell_k) \},$
- $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap \mathit{Conf}$,

and the transition relation consists of transitions of the following three types.

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.
- Extended timeshift $\nu + t$, $t \in \text{Time}$, applies to clocks only:
 - $(\nu + t)(x) := \nu(x) + t, x \in X$
 - $(\nu + t)(v) := \nu(v), v \in V$.
- Effect of modification $r \in R(X, V)$ on ν , denoted by $\nu[r]$:

$$\nu[x:=0](a):= \begin{cases} 0, \text{ if } a=x, \\ \nu(a), \text{ otherwise} \end{cases}$$

$$\nu[v := \psi_{int}](a) := \begin{cases} \nu(\psi_{int}), & \text{if } a = v, \\ \nu(a), & \text{otherwise} \end{cases}$$

• We set $\nu[\langle r_1, \dots, r_n \rangle] := \nu[r_1] \dots [r_n] = (((\nu[r_1])[r_2]) \dots)[r_n]$.

Op. Sem. of Networks: Internal Transitions

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there is $i \in \{1, \dots, n\}$ such that
 - there is a τ -edge $(\ell_i, \tau, \varphi, \vec{r}, \ell_i') \in E_i$,
 - $\nu \models \varphi$,
 - ullet $ec{\ell'} = ec{\ell}[\ell_i := \ell'_i]$,
 - $\nu' = \nu[\vec{r}]$,
 - $\nu' \models I_i(\ell'_i)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$.

Op. Sem. of Networks: Synchronisation Transitions

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu' \rangle$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ such that
 - there are edges $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell'_i) \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell'_j) \in E_j$,
 - $\nu \models \varphi_i \wedge \varphi_j$,
 - ullet $ec{\ell'}=ec{\ell}[\ell_i:=\ell'_i][\ell_j:=\ell'_j]$,
 - $\nu' = \nu[\vec{r}_i][\vec{r}_j]$,
 - $\nu' \models I_i(\ell'_i) \land I_j(\ell'_i)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

15 - 2014-07-24 - Setasem -

Op. Sem. of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
 - $\nu + t \models \bigwedge_{k=1}^n I_k(\ell_k)$,
 - (\clubsuit) there are no $i, j \in \{1, \ldots, n\}$ and $b \in U$ with $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell_i') \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell_j') \in E_j$,
 - (\clubsuit) there is no $i \in \{1, \ldots, n\}$ such that $\ell_i \in C_i$.

Restricting Non-determinism: Urgent Location

	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$
			$(x \ge y \implies y \le 0))$
\mathcal{N}	V	×	×
${\cal N}$, q_1 urgent	√		✓
\mathcal{N} , q_1 comm.			
\mathcal{N} , b urgent			1

Restricting Non-determinism: Committed Location

	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	
			$(x \ge y \implies y \le 0))$
\mathcal{N}	/	X	×
\mathcal{N} , q_1 urgent	V	✓	✓
\mathcal{N} , q_1 comm.	×	✓	✓ /
\mathcal{N} , b urgent			1/

Restricting Non-determinism: Urgent Channel

	Property 1	Property 2	Property 3
	$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}.q_1 \implies y \leq 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies)$
			$(x \ge y \implies y \le 0))$
$\overline{\mathcal{N}}$	/	×	X
\mathcal{N} , q_1 urgent	V	✓	✓
${\cal N}$, q_1 comm.	X	✓	✓
\mathcal{N} , b urgent	√	X	V

Extended vs. Pure Timed Automata

.5 - 2014-07-24 - Sepurel

Extended vs. Pure Timed Automata

$$\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$$
$$(\ell, \alpha, \varphi, \vec{r}, \ell') \in L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L$$

VS.

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$
$$(\ell, \alpha, \varphi, Y, \ell') \in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L$$

- \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
 - \bullet $C = \emptyset$,
 - $U = \emptyset$.
 - $V = \emptyset$,
 - for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.
 - $I(\ell), \varphi \in \Phi(X)$ is then a consequence of $V = \emptyset$.

Operational Semantics of Extended TA

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$$

and

$$\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n),$$

where $\{b_1,\ldots,b_m\}=\bigcup_{i=1}^n B_i$, coincide, i.e.

$$\mathcal{T}_e(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)) = \mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m \bullet (\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n)).$$

Reachability Problems for Extended Timed Automata

Recall

Theorem 4.33. [Location Reachability] The location reachability problem for **pure** timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for **pure** timed automata is **decidable**.

And what about tea `W extended timed automata?

5 = 2014-07-24 = Setadec =

What About Extended Timed Automata?

Extended Timed Automata add the following features:

Data-Variables

- ullet As long as the domains of all variables in V are finite, adding data variables doesn't hurt.
- If they're infinite, we've got a problem (encode two-counter machine).

Structuring Facilities

Don't hurt — they're merely abbreviations.

Restricting Non-determinism

- Restricting non-determinism doesn't affect (or change) the configuration space Conf.
- Restricting non-determinism only **removes** certain transitions, so makes reachable part of the region automaton even smaller (not necessarily strictly smaller).

The Logic of Uppaal

Uppaal Fragment of Timed Computation Tree Logic

Consider $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ over data variables V.

basic formula:

$$atom ::= \mathcal{A}_i.\ell \mid \varphi$$

where $\ell \in L_i$ is a location and φ a constraint over X_i and V.

configuration formulae:

$$term ::= atom \mid \neg term \mid term_1 \wedge term_2$$

existential path formulae:

$$e$$
-formula ::= $\exists \lozenge term \mid \exists \Box term$

universal path formulae: ("always finally", "always globally", "leads to")

$$a$$
-formula ::= $\forall \Diamond term \mid \forall \Box term \mid term_1 \longrightarrow term_2$

• formulae:

$$F ::= e\text{-}formula \mid a\text{-}formula$$

15 - 2014-07-24 - Sutl

Configurations at Time t

• Recall: **computation path** (or path) **starting in** $\langle \vec{\ell}_0, \nu_0 \rangle, t_0$:

$$\xi = \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \vec{\ell}_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \vec{\ell}_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$$

which is infinite or maximally finite.

• Given ξ and $t \in \text{Time}$, we use $\xi(t)$ to denote the set

$$\{\langle \vec{\ell}, \nu \rangle \mid \exists i \in \mathbb{N}_0 : t_i \leq t \leq t_{i+1} \land \vec{\ell} = \vec{\ell}_i \land \nu = \nu_i + t - t_i \}.$$

of configurations at time t.

- Why is it a set?
- Can it be empty?

We define a satisfaction relation

$$\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models F$$

between time stamped configurations

$$\langle \vec{\ell_0}, \nu_0 \rangle, t_0$$

of a network $\mathcal{C}(A_1,\ldots,A_n)$ and **formulae** F of the Uppaal logic.

It is defined inductively as follows:

•
$$\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \mathcal{A}_i.\ell$$

•
$$\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \varphi$$

•
$$\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \neg term$$

•
$$\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \neg term$$
 iff $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \not\models term$
• $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models term_1 \wedge term_2$ iff $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models term_i$, $i=1,2$

Exists finally:

• $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \exists \Diamond term$

iff $\exists \operatorname{path} \xi \operatorname{of} \mathcal{N} \operatorname{starting in} \langle \vec{\ell}_0, \nu_0 \rangle, t_0$ $\exists t \in \operatorname{Time}, \langle \vec{\ell}, \nu \rangle \in \operatorname{Conf}:$ $t_0 \leq t \wedge \langle \vec{\ell}, \nu \rangle \in \xi(t) \wedge \langle \vec{\ell}, \nu \rangle, t \models \operatorname{term}$

Example: $\exists \Diamond \varphi$

Exists globally:

• $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \exists \Box \ term$

iff \exists path ξ of \mathcal{N} starting in $\langle \vec{\ell}_0, \nu_0 \rangle, t_0$ \forall $t \in \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in \mathit{Conf}:$ $t_0 \leq t \land \langle \vec{\ell}, \nu \rangle \in \xi(t) \implies \langle \vec{\ell}, \nu \rangle, t \models \mathit{term}$

Example: $\exists \Box \varphi$

Always finally

• $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \forall \Diamond term$ iff $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \not\models \exists \Box \neg term$

Always globally:

• $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \forall \Box \ term$ iff $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \not\models \exists \Diamond \neg term$

Leads to:

• $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models term_1 \longrightarrow term_2$ iff $\forall \text{ path } \xi \text{ of } \mathcal{N} \text{ starting in } \langle \vec{\ell_0}, \nu_0 \rangle, t_0$ $\forall t \in \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in \mathit{Conf} :$ $t_0 \leq t \wedge \langle \vec{\ell}, \nu \rangle \in \xi(t)$ $\wedge \langle \vec{\ell}, \nu \rangle, t \models term_1$ implies $\langle \ell, \nu \rangle, t \models \forall \Diamond term_2$

Example: $\varphi_1 \longrightarrow \varphi_2$

Satisfaction of Uppaal-Logic by Networks

• We write $\mathcal{N} \models e\text{-}formula$ if and only if

for some
$$\langle \vec{\ell_0}, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell_0}, \nu_0 \rangle, 0 \models e\text{-}formula,$$
 (1)

and $\mathcal{N} \models a\text{-}formula$ if and only if

for all
$$\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models a\text{-}formula,$$
 (2)

where C_{ini} are the initial configurations of $\mathcal{T}_e(\mathcal{N})$.

- If $C_{ini} = \emptyset$, (1) is a contradiction and (2) is a tautology.
- If $C_{ini} \neq \emptyset$, then

 $\mathcal{N} \models F$ if and only if $\langle \vec{\ell}_{ini}, \nu_{ini} \rangle, 0 \models F$.

Example

Example

Example

- $\mathcal{N} \models \exists \Diamond \mathcal{L}.bright$?
- $\mathcal{N} \models \exists \Box \mathcal{L}.bright$?
- $\mathcal{N} \models \exists \Box \mathcal{L}.off$?
- $\mathcal{N} \models \forall \Diamond \mathcal{L}.light$?
- $\mathcal{N} \models \forall \Box \mathcal{L}.bright \implies x \geq 3$?
- $\mathcal{N} \models \mathcal{L}.bright \longrightarrow \mathcal{L}.off$?

Observer-based Automatic Verification of DC Properties for TA

Model-Checking DC Properties with Uppaal

15 - 2014-07-24 - Sdcvintro

Model-Checking DC Properties with Uppaal

- First Question: what is the "⊨" here?
- Second Question: what kinds of DC formulae can we check with Uppaal?
 - Clear: Not every DC formula.
 (Otherwise contradicting undecidability results.)
 - Quite clear: F = □[off] or F = ¬◊[light]
 (Use Uppaal's fragment of TCTL, something like ∀□ off, but not exactly (see later).)
 - Maybe: $F = \ell > 5 \implies \lozenge[\mathsf{off}]^5$
 - Not so clear: $F = \neg \lozenge(\lceil bright \rceil; \lceil light \rceil)$

Testable DC Properties

Testability

Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) A_F exists such that for all networks $\mathcal{N} = \mathcal{C}(A_1, \dots, A_n)$ it holds that

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Otherwise it's called **untestable**.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

Untestable DC Formulae

"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is A_F such that, for all networks N, we have

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_A := 1$
- $t_B^i := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \dots, n+1$
- $\begin{array}{l} \bullet \ t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[\ \text{for} \ i = 1, \dots, n+1 \\ \text{with} \ t_C^i t_B^i \neq 1 \ \text{for} \ 1 \leq i \leq n+1. \end{array}$

Example: n = 3

Untestable DC Formulae Cont'd

Example: n=3

- The shown interpretation \mathcal{I} satisfies **assumption** of property.
- It has n+1 candidates to satisfy **commitment**.
- By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- Because A_F is a test automaton for F, is has a computation path to q_{bad} .
- Because n=3, \mathcal{A}_F can not save all n+1 time points t_B^i .
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$

15 - 2014-07-24 - Sdctest -

Untestable DC Formulae Cont'd

Example: n=3

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0}:=t_B^{i_0}+1$.
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: \mathcal{A}_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. Contradiction.

Testable DC Formulae

Theorem 6.4. DC implementables are testable.

- Initialisation:
- Sequencing:
- Progress:
- Synchronisation:
- Bounded Stability:
- Unbounded Stability:
- Bounded initial stability:
- Unbounded initial stability:

$$\lceil \pi \rceil \vee \lceil \pi \rceil ; true$$

$$\lceil \pi \rceil \longrightarrow \lceil \pi \vee \pi_1 \vee \dots \vee \pi_n \rceil$$

$$\lceil \pi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$$

$$\lceil \pi \wedge \varphi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$$

Proof Sketch:

- For each implementable F, construct \mathcal{A}_F .
- Prove that A_F is a test automaton.

5 - 2014-07-24 - Sdctest -

Proof of Theorem 6.4: Preliminaries

 Note: DC does not refer to communication between TA in the network, but only to data variables and locations.

Example:

$$\Diamond(\lceil v=0 \rceil; \lceil v=1 \rceil)$$

- Recall: transitions of TA are only triggered by syncronisation, not by changes of data-variables.
- Approach: have auxiliary step action.

Technically, replace each

by

Proof of Theorem 6.4: Sketch

• Example: $\lceil \pi \rceil \xrightarrow{\theta} \lceil \neg \pi \rceil$

Counterexample Formulae

Definition 6.5.

 A counterexample formula (CE for short) is a DC formula of the form:

$$true$$
 ; $(\lceil \pi_1 \rceil \land \ell \in I_1)$; . . . ; $(\lceil \pi_k \rceil \land \ell \in I_k)$; $true$

where for $1 \leq i \leq k$,

- π_i are state assertions,
- I_i are non-empty, and open, half-open, or closed time intervals of the form
 - (b,e) or [b,e) with $b\in\mathbb{Q}_0^+$ and $e\in\mathbb{Q}_0^+$ $\dot{\cup}$ $\{\infty\}$,
 - (b,e] or [b,e] with $b,e\in\mathbb{Q}_0^+$.

 (b,∞) and $[b,\infty)$ denote unbounded sets.

• Let F be a DC formula. A DC formula F_{CE} is called **counterexample formula for** F if $\models F \iff \neg(F_{CE})$ holds.

Counterexample Formulae

Definition 6.5.

 A counterexample formula (CE for short) is a DC formula of the form:

$$true$$
 ; $(\lceil \pi_1 \rceil \land \ell \in I_1)$; . . . ; $(\lceil \pi_k \rceil \land \ell \in I_k)$; $true$

where for $1 \leq i \leq k$,

- π_i are state assertions,
- I_i are non-empty, and open, half-open, or closed time intervals of the form
 - (b,e) or [b,e) with $b\in\mathbb{Q}_0^+$ and $e\in\mathbb{Q}_0^+$ $\dot{\cup}$ $\{\infty\}$,
 - (b,e] or [b,e] with $b,e\in\mathbb{Q}_0^+$.

 (b,∞) and $[b,\infty)$ denote unbounded sets.

• Let F be a DC formula. A DC formula F_{CE} is called **counterexample formula for** F if $\models F \iff \neg(F_{CE})$ holds.

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.