Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

-16 - 2014-07-2

Contents & Goals

Last Lecture:

- Extended Timed Automata Cont'd
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Are all DC formulae testable?
 - What's a TBA and what's the difference to (extended) TA?
 - What's undecidable for timed (Büchi) automata? Idea of the proof?

• Content:

- An untestable DC formula.
- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
- The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
- Why this is unfortunate.
- Timed regular languages are not everything.

Recall: Testability

Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) \mathcal{A}_F exists such that for all networks $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ it holds that

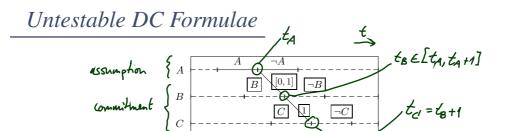
$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

-16 - 2014-07-29 - Sdctest -



"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is \mathcal{A}_F such that, for all networks \mathcal{N} , we have

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

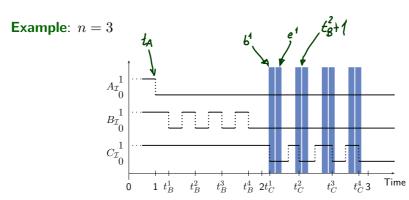
Assume the number of clocks in \mathcal{A}_F is $n \in \mathbb{N}_0$.

5/37

Untestable DC Formulae Cont'd

Consider the following time points:

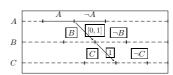
$$\begin{array}{l} \bullet \ t_A := 1 \\ \bullet \ t_B^i := t_A + \frac{2i-1}{2(n+1)} \ \text{for} \ i = 1, \ldots, n+1 \\ \bullet \ t_C^i \in \left] t_B^i + 1 - \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[\ \text{for} \ i = 1, \ldots, n+1 \\ \text{with} \ t_C^i - t_B^i \neq 1 \ \text{for} \ 1 \leq i \leq n+1. \end{array}$$



-16 - 2014-07-29 - Sdctest -

Untestable DC Formulae Cont'd

Example: n=3

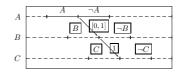


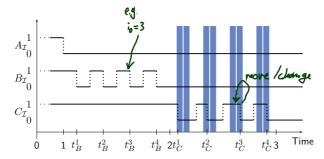
 $A_{\mathcal{I}_0}^{1} \\ B_{\mathcal{I}_0}^{1} \\ C_{\mathcal{I}_0}^{1} \\ 0 \\ 1 \ t_B^1 \ t_B^2 \ t_B^3 \ t_B^4 \ 2t_C^1 \ t_C^2 \ t_C^3 \ \text{Time}$

- The shown interpretation \mathcal{I} satisfies assumption of property.
- It has n+1 candidates to satisfy **commitment**.
- ullet By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Because n=3, \mathcal{A}_F can not save all n+1 time points t_B^i .
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$

Untestable DC Formulae Cont'd

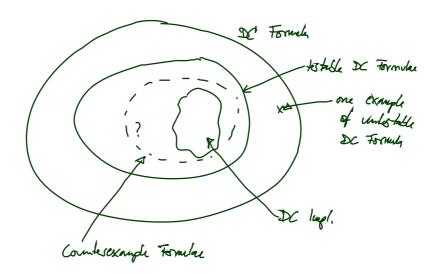
Example: n=3

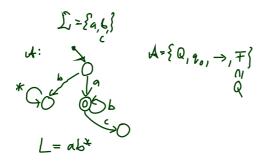


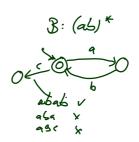


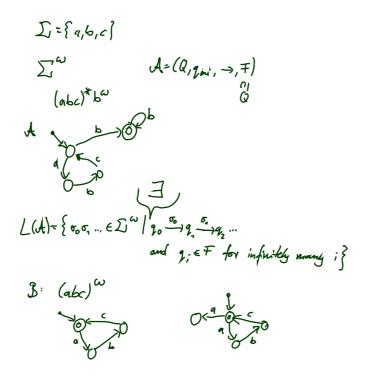
- Because A_F is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \leq i_0 \leq n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0} := t_B^{i_0} + 1.$
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: A_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. Contradiction.

- 16 - 2014-07-29 - Sdctesi







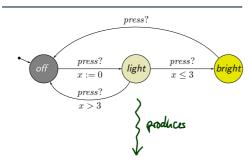


Timed Büchi Automata

[Alur and Dill, 1994]

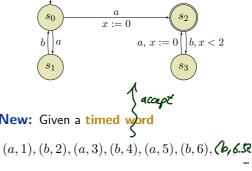
- 16 - 2014-07-29 - main -

... vs. Timed Automata



$$\begin{split} \xi &= \langle \textit{off}, 0 \rangle, 0 \xrightarrow{1} \langle \textit{off}, 1 \rangle, 1 \\ &\xrightarrow{press?} \langle \textit{light}, 0 \rangle, 1 \xrightarrow{3} \langle \textit{light}, 3 \rangle, 4 \\ \xrightarrow{press?} \langle \textit{bright}, 3 \rangle, 4 \xrightarrow{\cdots} \dots \end{split}$$

 ξ is a **computation path** and **run** of A.



does A accept it?

New: acceptance criterion is visiting accepting state infinitely often.

10/37

Timed Languages

Definition. A time sequence $\tau=\tau_1,\tau_2,\ldots$ is an infinite sequence of time values $\tau_i\in\mathbb{R}^+_0$, satisfying the following constraints:

(i) Monotonicity:

au increases strictly monotonically, i.e. $au_i < au_{i+1}$ for all $i \geq 1$.

(ii) **Progress**: For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \dots \in \Sigma^{\omega}$ is an infinite word over Σ , and
- ullet au is a time sequence.

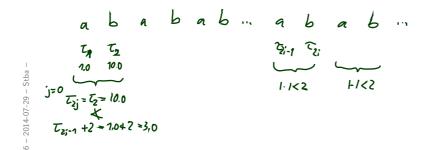
Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ .

Example: Timed Language

Timed word over alphabet Σ : a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \dots$ is an infinite word over Σ , and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$L_{crt} = \{ ((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2) \}$$



12/37

Timed Büchi Automata

not simple!

Definition. The set $\Phi(X)$ of **clock constraints** over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \wedge \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A **timed Büchi automaton** (TBA) $\mathcal A$ is a tuple (Σ,S,S_0,X,E,F) , where

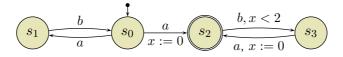
- \bullet Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- ullet X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times \Sigma \times \Sigma^X \times \Phi(X)$ gives the set of transitions.

An edge (s,s',a,λ,δ) represents a transition from state s to state s' on input symbol a. The set $\lambda\subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

• $F \subseteq S$ is a set of accepting states.

- 16 - 2014-07-29 - Stba -

$$\mathcal{A} = (\Sigma, S, S_0, X, E, F)$$
$$(s, s', a, \lambda, \delta) \in E$$



- 16 - 2014-07-29 - Stba -

14/37

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s},\bar{\nu})$, of a TBA (Σ,S,S_0,X,E,F) over a timed word (σ,τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\sigma_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}^+_0$, satisfying the following requirements:

- Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- Consecution: for all $i\geq 1$, there is an edge in E of the form $(s_{i-1},s_i,\sigma_i,\lambda_i,\delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

The set $inf(r)\subseteq S$ consists of those states $s\in S$ such that $s=s_i$ for infinitely many $i\geq 0$.

Definition. A run $r=(\bar{s},\bar{\nu})$ of a TBA over timed word (σ,τ) is called (an) **accepting** (run) if and only if $inf(r) \cap F \neq \emptyset$.

Example: (Accepting) Runs

$$\begin{array}{c|c}
 & b \\
\hline
 & a \\
\hline
 & a
\end{array}$$

$$\begin{array}{c}
 & b, x < 2 \\
\hline
 & a, x := 0
\end{array}$$

$$\begin{array}{c}
 & s_3 \\
\hline
 & a, x := 0
\end{array}$$

Timed word: $(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \dots$

• Can we construct any run? Is it accepting?

$$\langle s_0, x_{50} \rangle \xrightarrow{q_1} \langle s_2, 0 \rangle \xrightarrow{b} \langle \overline{s}_3, 10 \rangle \cdots \sqrt{c}$$

- Can we construct a non-run?
- Can we construct a (non-)accepting run?

16/37

The Language of a TBA

Definition. For a TBA \mathcal{A} , the **language** $L(\mathcal{A})$ of timed words it accepts is defined to be the set

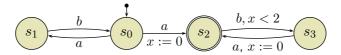
 $\{(\sigma,\tau)\mid \underline{\mathcal{A}} \text{ has an accepting run over } (\sigma,\tau)\}.$

For short: L(A) is the **language of** A.

Definition. A timed language L is a **timed** regular language if and only if L = L(A) for some TBA A.

Example: Language of a TBA

$L(\mathcal{A}) = \{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$



Claim:

- 16 - 2014-07-29 - Stba -

$$L(\mathcal{A}) = L_{crt} \ (= \{((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2)\})$$

Question: Is L_{crt} timed regular or not?

18/37

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

- 16 - 2014-07-29 - main -

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does $\mathcal A$ accept all timed words over Σ ? In other words: Is $L(\mathcal A)=\{(\sigma,\tau)\mid \sigma\in\Sigma^\omega, \tau \text{ time sequence}\}.$

I={a,b,c} A: 20 a

- 16 - 2014-07-29 - Suniv -

20/37

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does \mathcal{A} accept all timed words over Σ ? In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1 -hard.

("The class Π^1_1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let $\mathcal B$ be a Büchi Automaton over Σ .
- \mathcal{B} is universal if and only if $\overline{L(\mathcal{B})} = \emptyset$.
- \mathcal{B}' such that $L(\mathcal{B}') = \overline{L(\mathcal{B})}$ is effectively computable.
- Language emptyness is decidable for Büchi Automata.

Proof Idea

computerion returning recepting

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1 -hard.

encodings of Non-recus. Proof Idea: comp.

comp. = Lundec complement in Dax Ta

- Consider a language L_{undec} which consists of the recurring computations of a 2-counter machine M.
- ullet Construct a TBA ${\cal A}$ from M which accepts the complement of L_{undec} , i.e. with

 $L(\mathcal{A}) = \overline{L_{undec}}.$

not encocling of any compation

- ullet Then ${\cal A}$ is universal if and only if L_{undec} is empty. . .
 - \ldots which is the case if and only if M doesn't have a recurring computation.

21/37

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two **counters** C, D and
- \bullet a finite **program** consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \dots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

A computation of M is an infinite consecutive sequence

$$\langle 1,0,0\rangle = \langle i_0,c_0,d_0\rangle, \langle i_1,c_1,d_1\rangle, \langle i_2,c_2,d_2\rangle, \dots$$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.

16 - 2014-07-29 - Suniv

Step 1: The Language of Recurring Computations

ullet Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.

(In particular s.t. $L_{undec} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \dots, b_n, a_1, a_2\}$ as alphabet.
- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

$$b_i \underbrace{a_1 \dots a_1}_{c \text{ times}} \underbrace{a_2 \dots a_2}_{d \text{ times}} = b_1 a_1^c a_2^d$$

16 - 2014-07-29 - Suniv -

23/37

Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- ullet σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2}\dots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M.
- For all $j \in \mathbb{N}_0$,
 - the time of b_{i_j} is j.
 - if $c_{j+1}=c_j$: for every a_1 at time t in the interval [j,j+1]there is an a_1 at time t+1,
 - if $c_{j+1}=c_j+1$: for every a_1 at time t in the interval [j+1,j+2], except for the last one, there is an a_1 at time t-1,
 - if $c_{j+1}=c_j-1$: for every a_1 at time t in the interval [j,j+1], except for the last one, there is an a_1 at time t+1,

And analogously for the a_2 's.

Step 2: Construct "Observer" for $\overline{L_{undec}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$,

i.e., A accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word **not to be** in L_{undec} ?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\bullet \ \sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2}$
- $\langle i_1, c_1, d_1 \rangle$, $\langle i_2, c_2, d_2 \rangle$, ... is a recurring computation of M.
- the time of b_{i_j} is j,

- 16 - 2014-07-29 - Suniv

- if $c_{j+1} = c_j$ (= $c_j + 1$, = $c_j 1$): ...
 - (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.
 - (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode (1,0,0).
- (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
- (iv) The configuration encoded in [j+1,j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1[.

25/37

Step 2: Construct "Observer" for $\overline{L_{undec}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$,

i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

- (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.
- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode (1,0,0).
- (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
- (iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{init} \cup \mathcal{A}_{recur} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_i$$

- 16 - 2014-07-29 - Suniv -

Step 2.(i): Construct A_0

(i) The b_i at time $j\in\mathbb{N}$ is missing, or there is a spurious b_i at time $t\in]j,j+1[$.

[Alur and Dill, 1994]: "It is easy to construct such a timed automaton."

- 16 - 2014-07-29 - Suniv -

26/37

Step 2.(ii): Construct A_{init}

- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.
- It accepts

$$\{(\sigma_i, \tau_i)_{i \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$

16 - 2014-07-29 - Suniv -

Step 2.(iii): Construct A_{recur}

- (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
- A_{recur} accepts words with only finitely many b_i .

- 16 - 2014-07-29 - Suniv -

28/37

Step 2.(iv): Construct A_i

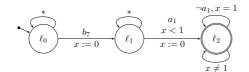
(iv) The configuration encoded in [j+1,j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."
- \mathcal{A}_7^2 is



- ullet \mathcal{A}^3_7 accepts words which encode unexpected increment of counter C.
- $\mathcal{A}_7^4,\ldots,\mathcal{A}_7^6$ accept words with missing decrement of D.

– 16 – 2014-07-29 – Suniv –

Consequences: Language Inclusion

- Given: Two TBAs A_1 and A_2 over alphabet B.
- Question: Is $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1 .
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
- If language inclusion was decidable, then we could use it to decide universality of ${\mathcal A}$ by checking

$$\mathcal{L}(\mathcal{A}_{univ}) \subseteq \mathcal{L}(\mathcal{A})$$

where \mathcal{A}_{univ} is any universal TBA (which is easy to construct).

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1 .
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check

$$L(\mathcal{A}_1) \cap L(\mathcal{A}_3) = \emptyset,$$

that is, whether the design has any non-allowed behaviour.

• Taking for granted that:

- 16 - 2014-07-29 - Sjaund

- The intersection automaton is effectively computable.
- The emptyness problem for Büchi automata is decidable. (Proof by construction of region automaton [Alur and Dill, 1994].)

32/37

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?
- If the class of timed regular languages were closed under **complementation**, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1 -hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA \mathcal{A} :

Complement language:

$$\overline{\mathcal{L}(\mathcal{A})} = \{(a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1\}.$$

Beyond Timed Regular

With clock constraints of the form

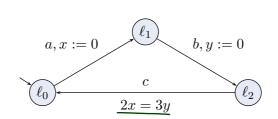
$$x + y \le x' + y'$$

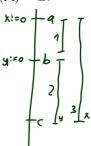
we can describe timed languages which are not timed regular.

In other words:

- There are strictly more timed languages than timed regular languages.
- There exists timed languages L such that there exists no \mathcal{A} with $L(\mathcal{A}) = L$.

Example:





$$\{((abc)^{\omega}, \tau) \mid \forall j.(\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\}$$

hat is a PLC?

09 - 2013-05-29 - main -

3/50

hat's special about PLC?

- microprocessor, memory, timers
- ullet digital (or analog) I/O ports
- possibly RS 232, fieldbuses, networking
- robust hardware
- reprogrammable
- standardised programming model (IEC 61131-3)

- 09 - 2013-05-29 - Splc -

here are PLC employed?

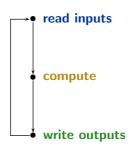
 mostly process automatisation

- production lines
- packaging lines
- chemical plants
- power plants
- electric motors, pneumatic or hydraulic cylinders
- ...
- not so much: **product** automatisation, there
 - tailored or OTS controller boards
 - embedded controllers
 - . .

6/50

o are PLC programmed?

• PLC have in common that they operate in a cyclic manner:



- Cyclic operation is repeated until external interruption (such as shutdown or reset).
- Cycle time: typically a few milliseconds. [?]
- Programming for PLC means providing the "compute" part.
- Input/output values are available via designated local variables.

- 09 - 2013-05-29 - Splc -

- 09 - 2013-05-29 - Splc -

Note:

the discussion here is not limited to PLC and IEC 61131-3 languages.

 Any programming language on an operating system with at least one real-time clock will do.

(Where a real-time clock is a piece of hardware such that,

- we can program it to wait for t time units,
- we can query whether the set time has elapsed,
- if we program it to wait for t time units, it does so with negligible deviation.)
- And strictly speaking, we don't even need "full blown" operating systems.
- PLC are just a formalisation on a good level of abstraction:
 - there are inputs somehow available as local variables,
 - there are outputs somehow available as local variables,
 - somehow, inputs are polled and outputs updated atomically,
 - there is some interface to a real-time clock.

12/50

References

09 - 2013-05-29 - Splc -

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems - Formal Specification and Automatic Verification*. Cambridge University Press.

- 16 - 2014-07-29 - main -