Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Extended Timed Automata Cont'd
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - Are all DC formulae testable?
 - What's a TBA and what's the difference to (extended) TA?
 - What's undecidable for timed (Büchi) automata? Idea of the proof?

Content:

- An untestable DC formula.
- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
- The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
- Why this is unfortunate.
- Timed regular languages are not everything.

Untestable DC Formulae

- 16 - 2014-07-29 - Sdctest -

Recall: Testability

Definition 6.1. A DC formula F is called **testable** if an observer (or test automaton (or monitor)) A_F exists such that for all networks $\mathcal{N} = \mathcal{C}(A_1, \dots, A_n)$ it holds that

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Otherwise it's called **untestable**.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

Untestable DC Formulae

"Whenever we observe a change from A to $\neg A$ at time t_A , the system has to produce a change from B to $\neg B$ at some time $t_B \in [t_A, t_A + 1]$ and a change from C to $\neg C$ at time $t_B + 1$.

Sketch of Proof: Assume there is A_F such that, for all networks N, we have

$$\mathcal{N} \models F$$
 iff $\mathcal{C}(\mathcal{A}'_1, \dots, \mathcal{A}'_n, \mathcal{A}_F) \models \forall \Box \neg (\mathcal{A}_F.q_{bad})$

Assume the number of clocks in A_F is $n \in \mathbb{N}_0$.

16 - 2014-07-29 - Sdctest -

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_A := 1$
- $t_B^i := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \dots, n+1$
- $t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[$ for $i=1,\ldots,n+1$ with $t_C^i t_B^i \neq 1$ for $1 \leq i \leq n+1$.

Consider the following time points:

- $t_A := 1$
- $t_B^i := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \dots, n+1$
- $t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[$ for $i=1,\dots,n+1$ with $t_C^i t_B^i \neq 1$ for $1 \leq i \leq n+1$.

Consider the following time points:

- $t_A := 1$
- $t_B^i := t_A + \frac{2i-1}{2(n+1)}$ for $i = 1, \dots, n+1$
- $t_C^i \in \left] t_B^i + 1 \frac{1}{4(n+1)}, t_B^i + 1 + \frac{1}{4(n+1)} \right[$ for $i=1,\ldots,n+1$ with $t_C^i t_B^i \neq 1$ for $1 \leq i \leq n+1$.

 $A \qquad A \qquad \neg A \qquad B \qquad \boxed{[0,1]} \quad \neg B \qquad B \qquad C \qquad \boxed{[0,1]} \quad \neg C \qquad C \qquad \boxed{[0,1]} \quad \neg C \qquad \boxed{[0,1]}$

- The shown interpretation \mathcal{I} satisfies **assumption** of property.
- It has n+1 candidates to satisfy **commitment**.
- ullet By choice of t_C^i , the commitment is not satisfied; so F not satisfied.
- Because A_F is a test automaton for F, is has a computation path to q_{bad} .
- ullet Because n=3, ${\cal A}_F$ can not save all n+1 time points t_B^i .
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2 t_B^{i_0} + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$

- Because A_F is a test automaton for F, is has a computation path to q_{bad} .
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2 - t_B^{i_0} + (-\frac{1}{4(n+1)}, \frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0}:=t_B^{i_0}+1.$

16 - 2014-07-29 - Sdctest -

Untestable DC Formulae Cont'd

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0}:=t_B^{i_0}+1$.
- ullet Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.

16 - 2014-07-29 - Sdctest

Untestable DC Formulae Cont'd

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0}:=t_B^{i_0}+1$.
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: A_F claims $\mathcal{I}' \not\models F$.

16 - 2014-07-29 - Sdctest

Untestable DC Formulae Cont'd

- ullet Because ${\cal A}_F$ is a test automaton for F, is has a computation path to $q_{\it bad}$.
- Thus there is $1 \le i_0 \le n$ such that all clocks of \mathcal{A}_F have a valuation which is not in $2-t_B^{i_0}+(-\frac{1}{4(n+1)},\frac{1}{4(n+1)})$
- Modify the computation to \mathcal{I}' such that $t_C^{i_0}:=t_B^{i_0}+1$.
- Then $\mathcal{I}' \models F$, but \mathcal{A}_F reaches q_{bad} via the same path.
- That is: \mathcal{A}_F claims $\mathcal{I}' \not\models F$.
- Thus A_F is not a test automaton. Contradiction.

16 - 2014 - 07 - 20 - 2014

Timed Büchi Automata

[Alur and Dill, 1994]

... vs. Timed Automata

$$\begin{split} \xi &= \langle \textit{off}, 0 \rangle, 0 \xrightarrow{1} \langle \textit{off}, 1 \rangle, 1 \\ &\xrightarrow{press?} \langle \textit{light}, 0 \rangle, 1 \xrightarrow{3} \langle \textit{light}, 3 \rangle, 4 \\ &\xrightarrow{press?} \langle \textit{bright}, 3 \rangle, 4 \xrightarrow{\cdots} \dots \end{split}$$

 ξ is a **computation path** and **run** of \mathcal{A} .

... vs. Timed Automata

$$\begin{split} \xi &= \langle \textit{off}, 0 \rangle, 0 \xrightarrow{1} \langle \textit{off}, 1 \rangle, 1 \\ &\xrightarrow{press?} \langle \textit{light}, 0 \rangle, 1 \xrightarrow{3} \langle \textit{light}, 3 \rangle, 4 \\ &\xrightarrow{press?} \langle \textit{bright}, 3 \rangle, 4 \xrightarrow{\cdots} \dots \end{split}$$

 ξ is a **computation path** and **run** of A.

... vs. Timed Automata

$$\xi = \langle off, 0 \rangle, 0 \xrightarrow{1} \langle off, 1 \rangle, 1$$

$$\xrightarrow{press?} \langle light, 0 \rangle, 1 \xrightarrow{3} \langle light, 3 \rangle, 4$$

$$\xrightarrow{press?} \langle bright, 3 \rangle, 4 \xrightarrow{\cdots} \dots$$

 ξ is a **computation path** and **run** of A.

New: Given a timed word

$$(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \dots,$$

does A accept it?

New: acceptance criterion is visiting accepting state infinitely often.

16 - 2014-07-29 - Stha -

Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

- (i) Monotonicity: τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \ge 1$.
- (ii) **Progress**: For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

- (i) Monotonicity: τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \ge 1$.
- (ii) **Progress**: For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \dots \in \Sigma^{\omega}$ is an infinite word over Σ , and
- ullet au is a time sequence.

16 - 2014-07-29 - Stba

Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

- (i) Monotonicity: τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \ge 1$.
- (ii) **Progress**: For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \dots \in \Sigma^{\omega}$ is an infinite word over Σ , and
- ullet au is a time sequence.

Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ .

Example: Timed Language

Timed word over alphabet Σ : a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \ldots$ is an infinite word over Σ , and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$L_{crt} = \{ ((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2) \}$$

16 - 2014-07-29 - Stba

Timed Büchi Automata

Definition. The set $\Phi(X)$ of **clock constraints** over X is defined inductively by

$$\delta ::= x \le c \mid c \le x \mid \neg \delta \mid \delta_1 \wedge \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. The set $\Phi(X)$ of **clock constraints** over X is defined inductively by

$$\delta ::= x \le c \mid c \le x \mid \neg \delta \mid \delta_1 \wedge \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A **timed Büchi automaton** (TBA) \mathcal{A} is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times \Sigma^X \times \Phi(X)$ gives the set of transitions.

An edge (s,s',a,λ,δ) represents a transition from state s to state s' on input symbol a. The set $\lambda\subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

• $F \subseteq S$ is a set of accepting states.

Example: TBA

$$\mathcal{A} = (\Sigma, S, S_0, X, E, F)$$
$$(s, s', a, \lambda, \delta) \in E$$

6 - 2014-07-29 - Stha

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_0^+$, satisfying the following requirements:

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_0^+$, satisfying the following requirements:

- Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

16 - 2014-07-29 - Stba

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_0^+$, satisfying the following requirements:

- Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

The set $inf(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \ge 0$.

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an **infinite** sequence of the form

$$r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_0^+$, satisfying the following requirements:

- Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i \tau_{i-1}))[\lambda_i := 0].$

The set $inf(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \ge 0$.

Definition. A run $r=(\bar{s},\bar{\nu})$ of a TBA over timed word (σ,τ) is called (an) **accepting** (run) if and only if $inf(r) \cap F \neq \emptyset$.

Example: (Accepting) Runs

$$r: \langle s_0, \nu_0 \rangle \xrightarrow[\tau_1]{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow[\tau_2]{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow[\tau_3]{\sigma_3} \dots \text{ initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \text{ s.t.}$$

$$(\nu_{i-1} + (\tau_i - \tau_{i-1})) \models \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]. \text{ Accepting iff } \inf(r) \cap F \neq \emptyset.$$

Timed word: $(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \dots$

Can we construct any run? Is it accepting?

• Can we construct a non-run?

• Can we construct a (non-)accepting run?

The Language of a TBA

Definition. For a TBA \mathcal{A} , the **language** $L(\mathcal{A})$ of timed words it accepts is defined to be the set

 $\{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$

For short: L(A) is the **language of** A.

Definition. A timed language L is a **timed regular language** if and only if L = L(A) for **some** TBA A.

Example: Language of a TBA

$$L(A) = \{(\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau)\}.$$

Claim:

$$L(\mathcal{A}) = L_{crt} \ (= \{ ((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2) \})$$

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

6 - 2014 - 07 - 29 - Suniv.

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does \mathcal{A} accept all timed words over Σ ? In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

6 - 2014-07-29 - Suniy -

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does \mathcal{A} accept all timed words over Σ ? In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1 -hard.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

6 - 2014-07-29 - Suniv

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ .
- Question: Does \mathcal{A} accept all timed words over Σ ? In other words: Is $L(\mathcal{A}) = \{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1 -hard.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let \mathcal{B} be a Büchi Automaton over Σ .
- \mathcal{B} is universal if and only if $\overline{L(\mathcal{B})} = \emptyset$.
- \mathcal{B}' such that $L(\mathcal{B}') = \overline{L(\mathcal{B})}$ is effectively computable.
- Language emptyness is decidable for Büchi Automata.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1 -hard.

Proof Idea:

- Consider a language L_{undec} which consists of the **recurring** computations of a **2-counter machine** M.
- ullet Construct a TBA ${\mathcal A}$ from M which accepts the complement of L_{undec} , i.e. with

$$L(\mathcal{A}) = \overline{L_{undec}}.$$

- Then ${\cal A}$ is universal if and only if L_{undec} is empty. . .
 - \dots which is the case if and only if M doesn't have a recurring computation.

- Suniy - 8-1014-07-20

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An **instruction increments or decrements** one of the counters, or **jumps**, here even non-deterministically.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- ullet a finite **program** consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

ullet A **computation** of M is an infinite consecutive sequence

$$\langle 1,0,0\rangle = \langle i_0,c_0,d_0\rangle, \langle i_1,c_1,d_1\rangle, \langle i_2,c_2,d_2\rangle, \dots$$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d \rangle$:

program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

ullet A **computation** of M is an infinite consecutive sequence

$$\langle 1,0,0\rangle = \langle i_0,c_0,d_0\rangle, \langle i_1,c_1,d_1\rangle, \langle i_2,c_2,d_2\rangle, \dots$$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.

Step 1: The Language of Recurring Computations

• Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M.

(In particular s.t. $L_{undec} = \emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.
- ullet We represent a configuration $\langle i,c,d \rangle$ of M by the sequence

$$b_i \underbrace{a_1 \dots a_1}_{c \text{ times}} \underbrace{a_2 \dots a_2}_{d \text{ times}} = b_1 a_1^c a_2^d$$

- Sunix - 90-70-14-07-29

Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2}\dots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M.

Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2}\dots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.
- For all $j \in \mathbb{N}_0$,
 - the time of b_{i_j} is j.
 - if $c_{j+1}=c_j$: for every a_1 at time t in the interval [j,j+1]there is an a_1 at time t+1,
 - if $c_{j+1}=c_j+1$: for every a_1 at time t in the interval [j+1,j+2], except for the last one, there is an a_1 at time t-1,
 - if $c_{j+1}=c_j-1$: for every a_1 at time t in the interval [j,j+1], except for the last one, there is an a_1 at time t+1,

And analogously for the a_2 's.

Step 2: Construct "Observer" for $\overline{L_{undec}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Step 2: Construct "Observer" for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

Step 2: Construct "Observer" for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

Recall: (σ, τ) is in L_{undec} if and only if:

- $\bullet \ \sigma = b_{i_1} a_1^{c_1} a_2^{d_1} b_{i_2} a_1^{c_2} a_2^{d_2}$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$ is a recurring computation of M.
- the time of b_{i_j} is j,
- if $c_{j+1} = c_j$ (= $c_j + 1$, = $c_j 1$): ...
 - (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.
 - (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.
 - (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
 - (iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Step 2: Construct "Observer" for L_{undec}

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A}) = \overline{L_{undec}}$, i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{undec}$.

Approach: What are the reasons for a timed word not to be in L_{undec} ?

- (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.
- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.
- (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
- (iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{init} \cup \mathcal{A}_{recur} \cup \bigcup_{1 \le i \le n} \mathcal{A}_i$$

Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.

[Alur and Dill, 1994]: "It is easy to construct such a timed automaton."

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.

It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$

Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i .

• \mathcal{A}_{recur} accepts words with only finitely many b_i .

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

• \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."
- \mathcal{A}_7^2 is

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j+1, j+2[doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j, j+1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."
- \mathcal{A}_7^2 is

- \mathcal{A}_7^3 accepts words which encode unexpected increment of counter C.
- $\mathcal{A}_7^4, \ldots, \mathcal{A}_7^6$ accept words with missing decrement of D.

Aha, And...?

5 - 2014-07-29 - Siannd -

Consequences: Language Inclusion

- Given: Two TBAs \mathcal{A}_1 and \mathcal{A}_2 over alphabet B.
- Question: Is $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

Possible applications of a decision procedure:

- ullet Characterise the allowed behaviour as ${\cal A}_2$ and model the design as ${\cal A}_1.$
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

6 - 2014-07-29 - Siaund

Consequences: Language Inclusion

- Given: Two TBAs A_1 and A_2 over alphabet B.
- Question: Is $\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?

Possible applications of a decision procedure:

- ullet Characterise the allowed behaviour as ${\cal A}_2$ and model the design as ${\cal A}_1.$
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

• If language inclusion was decidable, then we could use it to decide universality of $\mathcal A$ by checking

$$\mathcal{L}(\mathcal{A}_{univ}) \subseteq \mathcal{L}(\mathcal{A})$$

where A_{univ} is any universal TBA (which is easy to construct).

6 - 2014-07-29 - Sjaund -

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1 .
- Automatically construct \mathcal{A}_3 with $L(\mathcal{A}_3) = \overline{L(\mathcal{A}_2)}$ and check

$$L(\mathcal{A}_1) \cap L(\mathcal{A}_3) = \emptyset,$$

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptyness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)

5 - 2014-07-29 - Siannd -

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?

6 - 2014-07-29 - Siannd -

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?
- If the class of timed regular languages were closed under **complementation**, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1 -hardness of the inclusion problem." [Alur and Dill, 1994]

6 - 2014-07-29 - Siaund -

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = W$).
- Question: Is \overline{W} timed regular?
- If the class of timed regular languages were closed under **complementation**, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1 -hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA A:

$$\begin{array}{c}
a \\
\hline
 a \\
\hline
 x := 0
\end{array}$$

$$\begin{array}{c}
a \\
\hline
 x = 1
\end{array}$$

$$\mathcal{L}(\mathcal{A}) = \{(a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \ \exists j > i : (t_j = t_i + 1)\}$$

Complement language:

$$\overline{\mathcal{L}(\mathcal{A})} = \{(a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance } 1\}.$$

Beyond Timed Regular

Beyond Timed Regular

With clock constraints of the form

$$x + y \le x' + y'$$

we can describe timed languages which are not timed regular.

In other words:

- There are strictly more timed languages than timed regular languages.
- There exists timed languages L such that there exists no $\mathcal A$ with $L(\mathcal A)=L$.

Example:

$$\{((abc)^{\omega}, \tau) \mid \forall j.(\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\}$$

References

- [Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235.
- [Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). *Real-Time Systems Formal Specification and Automatic Verification*. Cambridge University Press.