Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Extended Timed Automata Cont'd
- A Fragment of TCTL
- Testable DC Formulae

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- Are all DC formulae testable?
- What's a TBA and what's the difference to (extended) TA?
- What's undecidable for timed (Büchi) automata? Idea of the proof?
- Content:
- An untestable DC formula.
- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
- The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
- Why this is unfortunate.
- Timed regular languages are not everything.

Untestable DC Formulae

Recall: Testability

Definition 6.1. A DC formula F is called testable if an observer (or test automaton (or monitor)) \mathcal{A}_{F} exists such that for all networks $\mathcal{N}=\mathcal{C}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ it holds that

$$
\mathcal{N} \models F \quad \text { iff } \quad \mathcal{C}\left(\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{n}^{\prime}, \mathcal{A}_{F}\right) \models \forall \square \neg\left(\mathcal{A}_{F} \cdot q_{\text {bad }}\right)
$$

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

Untestable DC Formulae

"Whenever we observe a change from A to $\neg A$ at time t_{A}, the system has to produce a change from B to $\neg B$ at some time $t_{B} \in\left[t_{A}, t_{A}+1\right]$ and a change from C to $\neg C$ at time $t_{B}+1$.

Sketch of Proof: Assume there is \mathcal{A}_{F} such that, for all networks \mathcal{N}, we have

$$
\mathcal{N} \models F \quad \text { iff } \quad \mathcal{C}\left(\mathcal{A}_{1}^{\prime}, \ldots, \mathcal{A}_{n}^{\prime}, \mathcal{A}_{F}\right) \models \forall \square \neg\left(\mathcal{A}_{F} . q_{b a d}\right)
$$

Assume the number of clocks in \mathcal{A}_{F} is $n \in \mathbb{N}_{0}$.

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_{A}:=1$
- $t_{B}^{i}:=t_{A}+\frac{2 i-1}{2(n+1)}$ for $i=1, \ldots, n+1$
- $\left.t_{C}^{i} \in\right] t_{B}^{i}+1-\frac{1}{4(n+1)}, t_{B}^{i}+1+\frac{1}{4(n+1)}[$ for $i=1, \ldots, n+1$ with $t_{C}^{i}-t_{B}^{i} \neq 1$ for $1 \leq i \leq n+1$.

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_{A}:=1$
- $t_{B}^{i}:=t_{A}+\frac{2 i-1}{2(n+1)}$ for $i=1, \ldots, n+1$
- $\left.t_{C}^{i} \in\right] t_{B}^{i}+1-\frac{1}{4(n+1)}, t_{B}^{i}+1+\frac{1}{4(n+1)}[$ for $i=1, \ldots, n+1$ with $t_{C}^{i}-t_{B}^{i} \neq 1$ for $1 \leq i \leq n+1$.

Example: $n=3$

Untestable DC Formulae Cont'd

Consider the following time points:

- $t_{A}:=1$
- $t_{B}^{i}:=t_{A}+\frac{2 i-1}{2(n+1)}$ for $i=1, \ldots, n+1$
- $\left.t_{C}^{i} \in\right] t_{B}^{i}+1-\frac{1}{4(n+1)}, t_{B}^{i}+1+\frac{1}{4(n+1)}[$ for $i=1, \ldots, n+1$ with $t_{C}^{i}-t_{B}^{i} \neq 1$ for $1 \leq i \leq n+1$.

Example: $n=3$

Untestable DC Formulae Cont'd

Example: $n=3$

- The shown interpretation \mathcal{I} satisfies assumption of property.
- It has $n+1$ candidates to satisfy commitment.
- By choice of t_{C}^{i}, the commitment is not satisfied; so F not satisfied.
- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Because $n=3, \mathcal{A}_{F}$ can not save all $n+1$ time points t_{B}^{i}.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}^{\prime} such that $t_{C}^{i_{0}}:=t_{B}^{i_{0}}+1$.

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}^{\prime} such that $t_{C}^{i_{0}}:=t_{B}^{i_{0}}+1$.
- Then $\mathcal{I}^{\prime} \models F$, but \mathcal{A}_{F} reaches $q_{b a d}$ via the same path.

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}^{\prime} such that $t_{C}^{i_{0}}:=t_{B}^{i_{0}}+1$.
- Then $\mathcal{I}^{\prime} \models F$, but \mathcal{A}_{F} reaches $q_{b a d}$ via the same path.
- That is: \mathcal{A}_{F} claims $\mathcal{I}^{\prime} \not \vDash F$.

Untestable DC Formulae Cont'd

Example: $n=3$

- Because \mathcal{A}_{F} is a test automaton for F, is has a computation path to $q_{b a d}$.
- Thus there is $1 \leq i_{0} \leq n$ such that all clocks of \mathcal{A}_{F} have a valuation which is not in $2-t_{B}^{i_{0}}+\left(-\frac{1}{4(n+1)}, \frac{1}{4(n+1)}\right)$
- Modify the computation to \mathcal{I}^{\prime} such that $t_{C}^{i_{0}}:=t_{B}^{i_{0}}+1$.
- Then $\mathcal{I}^{\prime} \models F$, but \mathcal{A}_{F} reaches $q_{b a d}$ via the same path.
- That is: \mathcal{A}_{F} claims $\mathcal{I}^{\prime} \not \vDash F$.
- Thus \mathcal{A}_{F} is not a test automaton. Contradiction.

Timed Büchi Automata

[Alur and Dill, 1994]

... vs. Timed Automata

$$
\begin{aligned}
\xi= & \langle\text { off, } 0\rangle, 0 \xrightarrow{1}\langle\text { off, } 1\rangle, 1 \\
& \xrightarrow{\text { press? }}\langle\text { light, } 0\rangle, 1 \xrightarrow{3}\langle\text { light, } 3\rangle, 4 \\
& \xrightarrow{\text { press? }}\langle\text { bright, } 3\rangle, 4 \xrightarrow[\rightarrow]{ } \ldots
\end{aligned}
$$

ξ is a computation path and run of \mathcal{A}.

... vs. Timed Automata

$$
\begin{aligned}
\xi= & \stackrel{\langle\text { off }, 0\rangle, 0}{\rightarrow}\langle\text { off }, 1\rangle, 1 \\
& \xrightarrow{\text { press? }}\langle\text { light } 0\rangle, 1 \xrightarrow{3}\langle\text { light, } 3\rangle, 4 \\
& \xrightarrow{\text { press? }}
\end{aligned}\langle\text { bright, } 3\rangle, 4 \xrightarrow{\longrightarrow} \ldots
$$

ξ is a computation path and run of \mathcal{A}.
... vs. Timed Automata

$$
\begin{aligned}
\xi= & \langle\text { off }, 0\rangle, 0 \xrightarrow{1}\langle\text { off }, 1\rangle, 1 \\
& \xrightarrow{\text { press? }}\langle\text { light, } 0\rangle, 1 \xrightarrow{3}\langle\text { light, } 3\rangle, 4 \\
& \xrightarrow{\text { press? }}\langle\text { bright, } 3\rangle, 4 \xrightarrow[\rightarrow]{\ldots}
\end{aligned}
$$

ξ is a computation path and run of \mathcal{A}.

$$
(a, 1),(b, 2),(a, 3),(b, 4),(a, 5),(b, 6), \ldots,
$$

does \mathcal{A} accept it?
New: acceptance criterion is visiting accepting state infinitely often.

Timed Languages

Definition. A time sequence $\tau=\tau_{1}, \tau_{2}, \ldots$ is an infinite sequence of time values $\tau_{i} \in \mathbb{R}_{0}^{+}$, satisfying the following constraints:
(i) Monotonicity:
τ increases strictly monotonically, i.e. $\tau_{i}<\tau_{i+1}$ for all $i \geq 1$.
(ii) Progress: For every $t \in \mathbb{R}_{0}^{+}$, there is some $i \geq 1$ such that $\tau_{i}>t$.

Timed Languages

Definition. A time sequence $\tau=\tau_{1}, \tau_{2}, \ldots$ is an infinite sequence of time values $\tau_{i} \in \mathbb{R}_{0}^{+}$, satisfying the following constraints:
(i) Monotonicity:
τ increases strictly monotonically, i.e. $\tau_{i}<\tau_{i+1}$ for all $i \geq 1$.
(ii) Progress: For every $t \in \mathbb{R}_{0}^{+}$, there is some $i \geq 1$ such that $\tau_{i}>t$.

Definition. A timed word over an alphabet Σ is a pair (σ, τ) where

- $\sigma=\sigma_{1}, \sigma_{2}, \cdots \in \Sigma^{\omega}$ is an infinite word over Σ, and
- τ is a time sequence.

Timed Languages

Definition. A time sequence $\tau=\tau_{1}, \tau_{2}, \ldots$ is an infinite sequence of time values $\tau_{i} \in \mathbb{R}_{0}^{+}$, satisfying the following constraints:
(i) Monotonicity:
τ increases strictly monotonically, i.e. $\tau_{i}<\tau_{i+1}$ for all $i \geq 1$.
(ii) Progress: For every $t \in \mathbb{R}_{0}^{+}$, there is some $i \geq 1$ such that $\tau_{i}>t$.

Definition. A timed word over an alphabet Σ is a pair (σ, τ) where

- $\sigma=\sigma_{1}, \sigma_{2}, \cdots \in \Sigma^{\omega}$ is an infinite word over Σ, and
- τ is a time sequence.

Definition. A timed language over an alphabet Σ is a set of timed words over Σ.

Example: Timed Language

Timed word over alphabet Σ : a pair (σ, τ) where

- $\sigma=\sigma_{1}, \sigma_{2}, \ldots$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$
L_{c r t}=\left\{\left((a b)^{\omega}, \tau\right) \mid \exists i \forall j \geq i:\left(\tau_{2 j}<\tau_{2 j-1}+2\right)\right\}
$$

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$
\delta::=x \leq c|c \leq x| \neg \delta \mid \delta_{1} \wedge \delta_{2}
$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$
\delta::=x \leq c|c \leq x| \neg \delta \mid \delta_{1} \wedge \delta_{2}
$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) \mathcal{A} is a tuple ($\left.\Sigma, S, S_{0}, X, E, F\right)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_{0} \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^{X} \times \Phi(X)$ gives the set of transitions.

An edge $\left(s, s^{\prime}, a, \lambda, \delta\right)$ represents a transition from state s to state s^{\prime} on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

- $F \subseteq S$ is a set of accepting states.

Example: TBA

$$
\begin{gathered}
\mathcal{A}=\left(\Sigma, S, S_{0}, X, E, F\right) \\
\quad\left(s, s^{\prime}, a, \lambda, \delta\right) \in E
\end{gathered}
$$

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $\left(\Sigma, S, S_{0}, X, E, F\right)$ over a timed word (σ, τ) is an infinite sequence of the form

$$
r:\left\langle s_{0}, \nu_{0}\right\rangle \xrightarrow[\tau_{1}]{\frac{\sigma_{1}}{\longrightarrow}}\left\langle s_{1}, \nu_{1}\right\rangle \xrightarrow[\tau_{2}]{\sigma_{2}}\left\langle s_{2}, \nu_{2}\right\rangle \xrightarrow[\tau_{3}]{\sigma_{3}} \ldots
$$

with $s_{i} \in S$ and $\nu_{i}: X \rightarrow \mathbb{R}_{0}^{+}$, satisfying the following requirements:

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $\left(\Sigma, S, S_{0}, X, E, F\right)$ over a timed word (σ, τ) is an infinite sequence of the form

$$
r:\left\langle s_{0}, \nu_{0}\right\rangle \xrightarrow[\tau_{1}]{\sigma_{1}}\left\langle s_{1}, \nu_{1}\right\rangle \xrightarrow[\tau_{2}]{\sigma_{2}}\left\langle s_{2}, \nu_{2}\right\rangle \xrightarrow[\tau_{3}]{\sigma_{3}} \ldots
$$

with $s_{i} \in S$ and $\nu_{i}: X \rightarrow \mathbb{R}_{0}^{+}$, satisfying the following requirements:

- Initiation: $s_{0} \in S_{0}$ and $\nu(x)=0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $\left(s_{i-1}, s_{i}, \sigma_{i}, \lambda_{i}, \delta_{i}\right)$ such that
- $\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)$ satisfies δ_{i} and
- $\nu_{i}=\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)\left[\lambda_{i}:=0\right]$.

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $\left(\Sigma, S, S_{0}, X, E, F\right)$ over a timed word (σ, τ) is an infinite sequence of the form

$$
r:\left\langle s_{0}, \nu_{0}\right\rangle \xrightarrow[\tau_{1}]{\sigma_{1}}\left\langle s_{1}, \nu_{1}\right\rangle \xrightarrow[\tau_{2}]{\sigma_{2}}\left\langle s_{2}, \nu_{2}\right\rangle \xrightarrow[\tau_{3}]{\sigma_{3}} \ldots
$$

with $s_{i} \in S$ and $\nu_{i}: X \rightarrow \mathbb{R}_{0}^{+}$, satisfying the following requirements:

- Initiation: $s_{0} \in S_{0}$ and $\nu(x)=0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $\left(s_{i-1}, s_{i}, \sigma_{i}, \lambda_{i}, \delta_{i}\right)$ such that
- $\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)$ satisfies δ_{i} and
- $\nu_{i}=\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)\left[\lambda_{i}:=0\right]$.

The set $\inf (r) \subseteq S$ consists of those states $s \in S$ such that $s=s_{i}$ for infinitely many $i \geq 0$.

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $\left(\Sigma, S, S_{0}, X, E, F\right)$ over a timed word (σ, τ) is an infinite sequence of the form

$$
r:\left\langle s_{0}, \nu_{0}\right\rangle \xrightarrow[\tau_{1}]{\sigma_{1}}\left\langle s_{1}, \nu_{1}\right\rangle \xrightarrow[\tau_{2}]{\sigma_{2}}\left\langle s_{2}, \nu_{2}\right\rangle \xrightarrow[\tau_{3}]{\sigma_{3}} \ldots
$$

with $s_{i} \in S$ and $\nu_{i}: X \rightarrow \mathbb{R}_{0}^{+}$, satisfying the following requirements:

- Initiation: $s_{0} \in S_{0}$ and $\nu(x)=0$ for all $x \in X$.
- Consecution: for all $i \geq 1$, there is an edge in E of the form $\left(s_{i-1}, s_{i}, \sigma_{i}, \lambda_{i}, \delta_{i}\right)$ such that
- $\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)$ satisfies δ_{i} and
- $\nu_{i}=\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)\left[\lambda_{i}:=0\right]$.

The set $\inf (r) \subseteq S$ consists of those states $s \in S$ such that $s=s_{i}$ for infinitely many $i \geq 0$.

Definition. A run $r=(\bar{s}, \bar{\nu})$ of a TBA over timed word (σ, τ) is called (an) accepting (run) if and only if $\inf (r) \cap F \neq \emptyset$.

Example: (Accepting) Runs

$$
\begin{array}{|l}
r:\left\langle s_{0}, \nu_{0}\right\rangle \underset{\tau_{1}}{\frac{\sigma_{1}}{\rightarrow}}\left\langle s_{1}, \nu_{1}\right\rangle \xrightarrow[\tau_{2}]{\sigma_{2}}\left\langle s_{2}, \nu_{2}\right\rangle \xrightarrow[\tau_{3}]{\frac{\sigma_{3}}{\tau_{3}} \ldots \text { initial and }\left(s_{i-1}, s_{i}, \sigma_{i}, \lambda_{i}, \delta_{i}\right) \in E \text {, s.t. }} \\
\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right) \models \delta_{i}, \nu_{i}=\left(\nu_{i-1}+\left(\tau_{i}-\tau_{i-1}\right)\right)\left[\lambda_{i}:=0\right] . \text { Accepting iff } \inf (r) \cap F \neq \emptyset .
\end{array}
$$

Timed word: $(a, 1),(b, 2),(a, 3),(b, 4),(a, 5),(b, 6), \ldots$

- Can we construct any run? Is it accepting?
- Can we construct a non-run?
- Can we construct a (non-)accepting run?

The Language of a TBA

Definition. For a TBA \mathcal{A}, the language $L(\mathcal{A})$ of timed words it accepts is defined to be the set

$$
\{(\sigma, \tau) \mid \mathcal{A} \text { has an accepting run over }(\sigma, \tau)\}
$$

For short: $L(\mathcal{A})$ is the language of \mathcal{A}.

Definition. A timed language L is a timed regular language if and only if $L=L(\mathcal{A})$ for some TBA \mathcal{A}.

Example: Language of a TBA

$$
L(\mathcal{A})=\{(\sigma, \tau) \mid \mathcal{A} \text { has an accepting run over }(\sigma, \tau)\} .
$$

Claim:

$$
L(\mathcal{A})=L_{c r t}\left(=\left\{\left((a b)^{\omega}, \tau\right) \mid \exists i \forall j \geq i:\left(\tau_{2 j}<\tau_{2 j-1}+2\right)\right\}\right)
$$

Question: Is $L_{c r t}$ timed regular or not?

The Universality Problem is Undecidable for TBA
[Alur and Dill, 1994]

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ.
- Question: Does \mathcal{A} accept all timed words over Σ ?

In other words: Is $L(\mathcal{A})=\left\{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau\right.$ time sequence $\}$.

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ.
- Question: Does \mathcal{A} accept all timed words over Σ ?

In other words: Is $L(\mathcal{A})=\left\{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau\right.$ time sequence $\}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_{1}^{1}-hard.
("The class Π_{1}^{1} consists of highly undecidable problems, including some nonarithmetical sets
(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

The Universality Problem

- Given: A TBA \mathcal{A} over alphabet Σ.
- Question: Does \mathcal{A} accept all timed words over Σ ?

In other words: Is $L(\mathcal{A})=\left\{(\sigma, \tau) \mid \sigma \in \Sigma^{\omega}, \tau\right.$ time sequence $\}$.

> Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_{1}^{1}-hard.

("The class Π_{1}^{1} consists of highly undecidable problems, including some nonarithmetical sets
(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)
Recall: With classical Büchi Automata (untimed), this is different:

- Let \mathcal{B} be a Büchi Automaton over Σ.
- \mathcal{B} is universal if and only if $\overline{L(\mathcal{B})}=\emptyset$.
- \mathcal{B}^{\prime} such that $L\left(\mathcal{B}^{\prime}\right)=\overline{L(\mathcal{B})}$ is effectively computable.
- Language emptyness is decidable for Büchi Automata.

Proof Idea

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_{1}^{1}-hard.

Proof Idea:

- Consider a language $L_{\text {undec }}$ which consists of the recurring computations of a 2-counter machine M.
- Construct a TBA \mathcal{A} from M which accepts the complement of $L_{\text {undec }}$, i.e. with

$$
L(\mathcal{A})=\overline{L_{\text {undec }}} .
$$

- Then \mathcal{A} is universal if and only if $L_{\text {undec }}$ is empty...
... which is the case if and only if M doesn't have a recurring computation.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d\rangle$:
program counter $i \in\{1, \ldots, n\}$, values $c, d \in \mathbb{N}_{0}$ of C and D.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d\rangle$:

$$
\text { program counter } i \in\{1, \ldots, n\} \text {, values } c, d \in \mathbb{N}_{0} \text { of } C \text { and } D \text {. }
$$

- A computation of M is an infinite consecutive sequence

$$
\langle 1,0,0\rangle=\left\langle i_{0}, c_{0}, d_{0}\right\rangle,\left\langle i_{1}, c_{1}, d_{1}\right\rangle,\left\langle i_{2}, c_{2}, d_{2}\right\rangle, \ldots
$$

that is, $\left\langle i_{j+1}, c_{j+1}, d_{j+1}\right\rangle$ is a result executing instruction i_{j} at $\left\langle i_{j}, c_{j}, d_{j}\right\rangle$.

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
- A configuration of M is a triple $\langle i, c, d\rangle$:

$$
\text { program counter } i \in\{1, \ldots, n\} \text {, values } c, d \in \mathbb{N}_{0} \text { of } C \text { and } D \text {. }
$$

- A computation of M is an infinite consecutive sequence

$$
\langle 1,0,0\rangle=\left\langle i_{0}, c_{0}, d_{0}\right\rangle,\left\langle i_{1}, c_{1}, d_{1}\right\rangle,\left\langle i_{2}, c_{2}, d_{2}\right\rangle, \ldots
$$

that is, $\left\langle i_{j+1}, c_{j+1}, d_{j+1}\right\rangle$ is a result executing instruction i_{j} at $\left\langle i_{j}, c_{j}, d_{j}\right\rangle$.
A computation of M is called recurring iff $i_{j}=1$ for infinitely many $j \in \mathbb{N}_{0}$.

Step 1: The Language of Recurring Computations

- Let M be a 2 CM with n instructions.

Wanted: A timed language $L_{\text {undec }}$ (over some alphabet) representing exactly the recurring computations of M.
(In particular s.t. $L_{\text {undec }}=\emptyset$ if and only if M has no recurring computation.)

- Choose $\Sigma=\left\{b_{1}, \ldots, b_{n}, a_{1}, a_{2}\right\}$ as alphabet.
- We represent a configuration $\langle i, c, d\rangle$ of M by the sequence

$$
b_{i} \underbrace{a_{1} \ldots a_{1}}_{c \text { times }} \underbrace{a_{2} \ldots a_{2}}_{d \text { times }}=b_{1} a_{1}^{c} a_{2}^{d}
$$

Step 1: The Language of Recurring Computations

Let $L_{\text {undec }}$ be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_{1}} a_{1}^{c_{1}} a_{2}^{d_{1}} b_{i_{2}} a_{1}^{c_{2}} a_{2}^{d_{2}} \ldots$
- $\left\langle i_{1}, c_{1}, d_{1}\right\rangle,\left\langle i_{2}, c_{2}, d_{2}\right\rangle, \ldots$ is a recurring computation of M.

Step 1: The Language of Recurring Computations

Let $L_{\text {undec }}$ be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_{1}} a_{1}^{c_{1}} a_{2}^{d_{1}} b_{i_{2}} a_{1}^{c_{2}} a_{2}^{d_{2}} \ldots$
- $\left\langle i_{1}, c_{1}, d_{1}\right\rangle,\left\langle i_{2}, c_{2}, d_{2}\right\rangle, \ldots$ is a recurring computation of M.
- For all $j \in \mathbb{N}_{0}$,
- the time of $b_{i_{j}}$ is j.
- if $c_{j+1}=c_{j}$:
for every a_{1} at time t in the interval $[j, j+1]$
there is an a_{1} at time $t+1$,
- if $c_{j+1}=c_{j}+1$:
for every a_{1} at time t in the interval $[j+1, j+2]$,
except for the last one, there is an a_{1} at time $t-1$,
- if $c_{j+1}=c_{j}-1$:
for every a_{1} at time t in the interval $[j, j+1]$, except for the last one, there is an a_{1} at time $t+1$,

And analogously for the a_{2} 's.

Step 2: Construct "Observer" for $\overline{L_{\text {undec }}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A})=\overline{L_{\text {undec }}}$,
i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text {undec }}$.

Step 2: Construct "Observer" for $\overline{L_{\text {undec }}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A})=\overline{L_{\text {undec }}}$,
i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text {undec }}$.

Approach: What are the reasons for a timed word not to be in $L_{\text {undec }}$?

Step 2: Construct "Observer" for $\overline{L_{\text {undec }}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A})=\overline{L_{\text {undec }}}$,
i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text {undec }}$.

Approach: What are the reasons for a timed word not to be in $L_{\text {undec }}$?
Recall: (σ, τ) is in $L_{\text {undec }}$ if and only if:

- $\sigma=b_{i_{1}} a_{1}^{c_{1}} a_{2}^{d_{1}} b_{i_{2}} a_{1}^{c_{2}} a_{2}^{d_{2}}$
- $\left\langle i_{1}, c_{1}, d_{1}\right\rangle,\left\langle i_{2}, c_{2}, d_{2}\right\rangle, \ldots$
is a recurring computation of M.
- the time of $b_{i_{j}}$ is j,
- if $c_{j+1}=c_{j}\left(=c_{j}+1,=c_{j}-1\right): \ldots$
(i) The b_{i} at time $j \in \mathbb{N}$ is missing, or there is a spurious b_{i} at time $\left.t \in\right] j, j+1[$.
(ii) The prefix of the timed word with times $0 \leq t<1$ doesn't encode $\langle 1,0,0\rangle$.
(iii) The timed word is not recurring, i.e. it has only finitely many b_{i}.
(iv) The configuration encoded in $[j+1, j+2[$ doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Step 2: Construct "Observer" for $\overline{L_{\text {undec }}}$

Wanted: A TBA \mathcal{A} such that $L(\mathcal{A})=\overline{L_{\text {undec }}}$,
i.e., \mathcal{A} accepts a timed word (σ, τ) if and only if $(\sigma, \tau) \notin L_{\text {undec }}$.

Approach: What are the reasons for a timed word not to be in $L_{\text {undec }}$?
(i) The b_{i} at time $j \in \mathbb{N}$ is missing, or there is a spurious b_{i} at time $\left.t \in\right] j, j+1[$.
(ii) The prefix of the timed word with times $0 \leq t<1$ doesn't encode $\langle 1,0,0\rangle$.
(iii) The timed word is not recurring, i.e. it has only finitely many b_{i}.
(iv) The configuration encoded in $[j+1, j+2[$ doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Plan: Construct a TBA \mathcal{A}_{0} for case (i), a TBA $\mathcal{A}_{\text {init }}$ for case (ii), a TBA $\mathcal{A}_{\text {recur }}$ for case (iii), and one $\operatorname{TBA} \mathcal{A}_{i}$ for each instruction for case (iv).

Then set

$$
\mathcal{A}=\mathcal{A}_{0} \cup \mathcal{A}_{\text {init }} \cup \mathcal{A}_{\text {recur }} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_{i}
$$

Step 2.(i): Construct \mathcal{A}_{0}

(i) The b_{i} at time $j \in \mathbb{N}$ is missing, or there is a spurious b_{i} at time $\left.t \in\right] j, j+1[$.
[Alur and Dill, 1994]: "It is easy to construct such a timed automaton."

Step 2.(ii): Construct $\mathcal{A}_{\text {init }}$
(ii) The prefix of the timed word with times $0 \leq t<1$ doesn't encode $\langle 1,0,0\rangle$.

- It accepts

$$
\left\{\left(\sigma_{j}, \tau_{j}\right)_{j \in \mathbb{N}_{0}} \mid\left(\sigma_{0} \neq b_{1}\right) \vee\left(\tau_{0} \neq 0\right) \vee\left(\tau_{1} \neq 1\right)\right\}
$$

Step 2.(iii): Construct $\mathcal{A}_{\text {recur }}$

(iii) The timed word is not recurring, i.e. it has only finitely many b_{i}.

- $\mathcal{A}_{\text {recur }}$ accepts words with only finitely many b_{i}.

Step 2.(iv): Construct \mathcal{A}_{i}

(iv) The configuration encoded in $[j+1, j+2$ [doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5 .
Once again: stepwise. \mathcal{A}_{7} is $\mathcal{A}_{7}^{1} \cup \cdots \cup \mathcal{A}_{7}^{6}$.

Step 2.(iv): Construct \mathcal{A}_{i}

(iv) The configuration encoded in $[j+1, j+2$ [doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5 .
Once again: stepwise. \mathcal{A}_{7} is $\mathcal{A}_{7}^{1} \cup \cdots \cup \mathcal{A}_{7}^{6}$.

- \mathcal{A}_{7}^{1} accepts words with b_{7} at time j but neither b_{3} nor b_{5} at time $j+1$.
"Easy to construct."

Step 2.(iv): Construct \mathcal{A}_{i}

(iv) The configuration encoded in $[j+1, j+2$ [doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5 .
Once again: stepwise. \mathcal{A}_{7} is $\mathcal{A}_{7}^{1} \cup \cdots \cup \mathcal{A}_{7}^{6}$.

- \mathcal{A}_{7}^{1} accepts words with b_{7} at time j but neither b_{3} nor b_{5} at time $j+1$.
"Easy to construct."
- \mathcal{A}_{7}^{2} is

Step 2.(iv): Construct \mathcal{A}_{i}

(iv) The configuration encoded in $[j+1, j+2$ [doesn't faithfully represent the effect of instruction b_{i} on the configuration encoded in $[j, j+1[$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5 .
Once again: stepwise. \mathcal{A}_{7} is $\mathcal{A}_{7}^{1} \cup \cdots \cup \mathcal{A}_{7}^{6}$.

- \mathcal{A}_{7}^{1} accepts words with b_{7} at time j but neither b_{3} nor b_{5} at time $j+1$.
"Easy to construct."
- \mathcal{A}_{7}^{2} is

- \mathcal{A}_{7}^{3} accepts words which encode unexpected increment of counter C.
- $\mathcal{A}_{7}^{4}, \ldots, \mathcal{A}_{7}^{6}$ accept words with missing decrement of D.

Aha, And...?

Consequences: Language Inclusion

- Given: Two TBAs \mathcal{A}_{1} and \mathcal{A}_{2} over alphabet B.
- Question: Is $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \mathcal{A}_{2} and model the design as \mathcal{A}_{1}.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

Consequences: Language Inclusion

- Given: Two TBAs \mathcal{A}_{1} and \mathcal{A}_{2} over alphabet B.
- Question: Is $\mathcal{L}\left(\mathcal{A}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{2}\right)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \mathcal{A}_{2} and model the design as \mathcal{A}_{1}.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
- If language inclusion was decidable, then we could use it to decide universality of \mathcal{A} by checking

$$
\mathcal{L}\left(\mathcal{A}_{\text {univ }}\right) \subseteq \mathcal{L}(\mathcal{A})
$$

where $\mathcal{A}_{\text {univ }}$ is any universal TBA (which is easy to construct).

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A})=W$).
- Question: Is \bar{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \mathcal{A}_{2} and model the design as \mathcal{A}_{1}.
- Automatically construct \mathcal{A}_{3} with $L\left(\mathcal{A}_{3}\right)=\overline{L\left(\mathcal{A}_{2}\right)}$ and check

$$
L\left(\mathcal{A}_{1}\right) \cap L\left(\mathcal{A}_{3}\right)=\emptyset,
$$

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
- The intersection automaton is effectively computable.
- The emptyness problem for Büchi automata is decidable.
(Proof by construction of region automaton [Alur and Dill, 1994].)

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A})=W$).
- Question: Is \bar{W} timed regular?

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A})=W$).
- Question: Is \bar{W} timed regular?
- If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π_{1}^{1}-hardness of the inclusion problem." [Alur and Dill, 1994]

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA \mathcal{A} such that $\mathcal{L}(\mathcal{A})=W$).
- Question: Is \bar{W} timed regular?
- If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π_{1}^{1}-hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA \mathcal{A} :

$$
\mathcal{L}(\mathcal{A})=\left\{\left(a^{\omega},\left(t_{i}\right)_{i \in \mathbb{N}_{0}}\right) \mid \exists i \in \mathbb{N}_{0} \exists j>i:\left(t_{j}=t_{i}+1\right)\right\}
$$

Complement language:

$$
\overline{\mathcal{L}(\mathcal{A})}=\left\{\left(a^{\omega},\left(t_{i}\right)_{i \in \mathbb{N}_{0}}\right) \mid \text { no two } a \text { are separated by distance } 1\right\} .
$$

Beyond Timed Regular

Beyond Timed Regular

With clock constraints of the form

$$
x+y \leq x^{\prime}+y^{\prime}
$$

we can describe timed languages which are not timed regular.
In other words:

- There are strictly more timed languages than timed regular languages.
- There exists timed languages L such that there exists no \mathcal{A} with $L(\mathcal{A})=L$.

Example:

$$
\left\{\left((a b c)^{\omega}, \tau\right) \mid \forall j \cdot\left(\tau_{3 j}-\tau_{3 j-1}\right)=2\left(\tau_{3 j-1}-\tau_{3 j-2}\right)\right\}
$$

References

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2):183-235.
[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

