- 14 - 2014-07-17 - main -

Real-Time Systems

Lecture 14: Regions and Zones

2014-07-17

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

14 - 2014-07-17 - Sprelim -

Contents & Goals

Last Lecture:

Location reachability decidability

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What's a zone? In contrast to a region?
 - Motivation for having zones?
 - What's a DBM? Who needs to know DBMs?

Content:

- Zones
- Difference Bound Matrices

Zones

(Presentation following [Fränzle, 2007])

14 - 2014-07-17 - Szones -

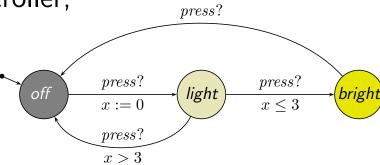
Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

$$(2c+2)^{|X|} \cdot (4c+3)^{\frac{1}{2}|X|\cdot(|X|-1)}$$

is an upper bound on the number of regions.

In the desk lamp controller,



many regions are reachable in $\mathcal{R}(\mathcal{L})$, but we convinced ourselves that it's **actually** only important whether $\nu(x) \in [0,3]$ or $\nu(x) \in (3,\infty)$.

So: seems there are even equivalence classes of undistinguishable regions.

Wanted: Zones instead of Regions

• In $\mathcal{R}(\mathcal{L})$ we have transitions:

$$\qquad \langle \text{ (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{ (bright)}, \{0\} \rangle, \quad \langle \text{ (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{ (bright)}, (0, 1) \rangle,$$

- . . . ,
- $\bullet \ \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, (2,3) \rangle, \quad \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, \{3\} \rangle$

Wanted: Zones instead of Regions

• In $\mathcal{R}(\mathcal{L})$ we have transitions:

$$\bullet \ \langle \underbrace{\textit{light}}, \{0\} \rangle \xrightarrow{press?} \langle \underbrace{\textit{bright}}, \{0\} \rangle, \quad \langle \underbrace{\textit{light}}, \{0\} \rangle \xrightarrow{press?} \langle \underbrace{\textit{bright}}, (0, 1) \rangle,$$

- . . . ,
- $\bullet \ \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, (2,3) \rangle, \quad \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, \{3\} \rangle$

Which seems to be a complicated way to write just:

$$\langle \text{(light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{(bright)}, [0, 3] \rangle$$

Wanted: Zones instead of Regions

• In $\mathcal{R}(\mathcal{L})$ we have transitions:

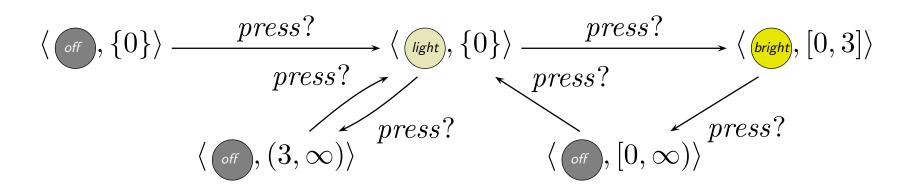
•
$$\langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, \{0\} \rangle$$
, $\langle \text{light}, \{0\} \rangle \xrightarrow{press?} \langle \text{bright}, (0, 1) \rangle$, • ...,

$$\bullet \ \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, (2,3) \rangle, \quad \langle \text{\tiny (light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{\tiny (bright)}, \{3\} \rangle$$

Which seems to be a complicated way to write just:

$$\langle \text{(light)}, \{0\} \rangle \xrightarrow{press?} \langle \text{(bright)}, [0, 3] \rangle$$

• Can't we **constructively** abstract \mathcal{L} to:



What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \to \mathsf{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

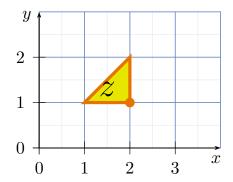
 $\nu \in z$ if and only if $\nu \models \varphi$.

What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \to \mathsf{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

 $\nu \in z$ if and only if $\nu \models \varphi$.

Example:



is a clock zone by

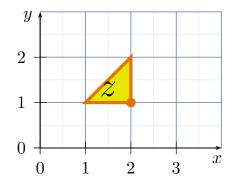
$$\varphi = (x \le 2) \land (x > 1) \land (y \ge 1) \land (y < 2) \land (x - y \ge 0)$$

What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \to \mathsf{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

 $\nu \in z$ if and only if $\nu \models \varphi$.

Example:

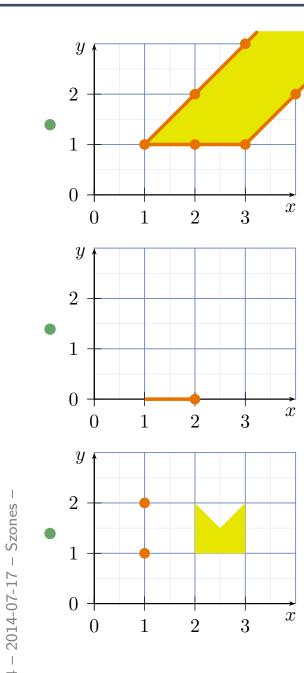


is a clock zone by

$$\varphi = (x \le 2) \land (x > 1) \land (y \ge 1) \land (y < 2) \land (x - y \ge 0)$$

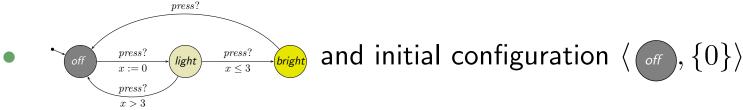
- Note: Each clock constraint φ is a **symbolic representation** of a zone.
- But: There's no one-on-one correspondence between clock constraints and zones. The zone $z=\emptyset$ corresponds to $(x>1 \land x<1)$, $(x>2 \land x<2)$, . . .

More Examples: Zone or Not?



Zone-based Reachability

Given:



Assume a function

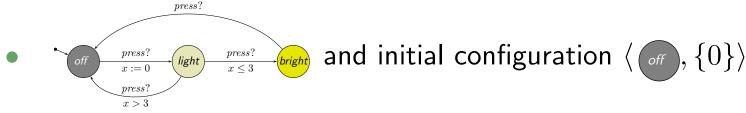
$$\operatorname{Post}_e: (L \times \operatorname{\mathsf{Zones}}) \to (L \times \operatorname{\mathsf{Zones}})$$

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ yields the configuration $\langle \ell', z' \rangle$ such that

- ullet zone z' denotes exactly those clock valuations u'
- which are reachable from a configuration $\langle \ell, \nu
 angle$, $u \in z$,
- by taking edge $e = (\ell, \alpha, \varphi, Y, \ell') \in E$.

Zone-based Reachability

Given:



Assume a function

$$\operatorname{Post}_e: (L \times \operatorname{\mathsf{Zones}}) \to (L \times \operatorname{\mathsf{Zones}})$$

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ yields the configuration $\langle \ell', z' \rangle$ such that

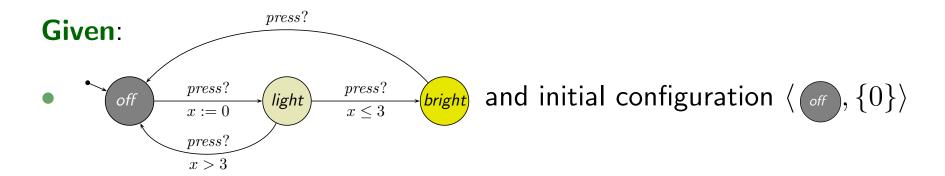
- ullet zone z' denotes exactly those clock valuations u'
- ullet which are reachable from a configuration $\langle \ell,
 u
 angle$, $u \in z$,
- by taking edge $e = (\ell, \alpha, \varphi, Y, \ell') \in E$.

Then $\ell \in L$ is reachable in \mathcal{A} if and only if

$$Post_{e_n}(\dots(Post_{e_1}(\langle \ell_{ini}, z_{ini} \rangle) \dots)) = \langle \ell, z \rangle$$

for some $e_1, \ldots, e_n \in E$ and some z.

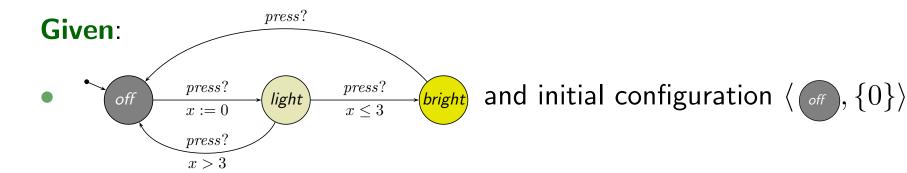
Zone-based Reachability: In Other Words



Wanted: A procedure to compute the set

- \langle (light), $\{0\}\rangle$
- ullet \langle (bright), $[0,3] \rangle$
- ullet (off $,[0,\infty)
 angle$

Zone-based Reachability: In Other Words



Wanted: A procedure to compute the set

- $\bullet \ \langle \text{(light)}, \{0\} \rangle$
- ullet \langle (bright), $[0,3] \rangle$
- ullet (off $,[0,\infty)
 angle$

- Set $R := \{\langle \ell_{ini}, z_{ini} \rangle\} \subset L \times \mathsf{Zones}$
- Repeat
 - pick
 - ullet a pair $\langle \ell,z
 angle$ from R and
 - $\bullet \ \ \text{an edge} \ e \in E \ \text{with source} \ \ell$

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ is not already subsumed by R

• add $\operatorname{Post}_e(\langle \ell, z \rangle)$ to R

until no more such $\langle \ell, z \rangle \in R$ and $e \in E$ are found.

Stocktaking: What's Missing?

- Set $R := \{\langle \ell_{ini}, z_{ini} \rangle\} \subset L \times \mathsf{Zones}$
- Repeat
 - pick
 - ullet a pair $\langle \ell,z
 angle$ from R and
 - an edge $e \in E$ with source ℓ

such that $\operatorname{Post}_e(\langle \ell, z \rangle)$ is not already **subsumed** by R

• add $\operatorname{Post}_e(\langle \ell, z \rangle)$ to R

until no more such $\langle \ell, z \rangle \in R$ and $e \in E$ are found.

Missing:

- Algorithm to effectively compute $\operatorname{Post}_e(\langle \ell, z \rangle)$ for given configuration $\langle \ell, z \rangle \in L \times \mathsf{Zones}$ and edge $e \in E$.
- Decision procedure for whether configuration $\langle \ell', z' \rangle$ is **subsumed** by a given subset of $L \times \mathsf{Zones}$.

Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants c_x into account (not in lecture).

14 - 2014-07-17 - Szones

What is a Good "Post"?

• If z is given by a constraint $\varphi \in \Phi(X)$, then the zone component z' of $\operatorname{Post}_e(\ell,z) = \langle \ell',z' \rangle$ should also be a constraint from $\Phi(X)$. (Because sets of clock valuations are soo unhandily...)

Good news: the following operations can be carried out by manipulating φ .

• The **elapse time** operation:

$$\uparrow: \Phi(X) \to \Phi(X)$$

Given a constraint φ , the constraint $\uparrow(\varphi)$, or $\varphi \uparrow$ in postfix notation, is supposed to denote the set of clock valuations

$$\{\nu + t \mid \nu \models \varphi, t \in \mathsf{Time}\}.$$

In other symbols: we want

$$[\![\uparrow(\varphi)]\!] = [\![\varphi\uparrow]\!] = \{\nu + t \mid \nu \in [\![\varphi]\!], t \in \mathsf{Time}\}.$$

To this end: remove all upper bounds $x \leq c$, x < c from φ and add diagonals.

Good News Cont'd

Good news: the following operations can be carried out by manipulating φ .

• elapse time $\varphi \uparrow$ with

$$\llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \models \varphi, t \in \mathsf{Time} \}$$

• zone intersection $\varphi_1 \wedge \varphi_2$ with

$$\llbracket \varphi_1 \land \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}$$

• clock hiding $\exists x.\varphi$ with

$$[\![\exists\,x.\varphi]\!]=\{\nu\mid \text{there is }t\in \mathsf{Time such that }\nu[x:=t]\models\varphi\}$$

• clock reset $\varphi[x:=0]$ with

$$\llbracket \varphi[x := 0] \rrbracket = \llbracket x = 0 \land \exists \, x. \varphi \rrbracket$$

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have $\operatorname{Post}_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$Post_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let **time elapse** starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

4 - 2014-07-17 - Szones -

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$Post_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let **time elapse** starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable good valuations.

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$Post_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let **time elapse** starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable good valuations.

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: φ_3 are the reachable good valuations where e is enabled.

14 - 2014-07-17 - Szones -

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$Post_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let **time elapse** starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable good valuations.

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: φ_3 are the reachable good valuations where e is enabled.

• $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$

reset clocks: φ_4 are all possible outcomes of taking e from φ_3

14 - 2014-07-17 - Szones

This is Good News...

...because given $\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle$ and $e = (\ell, \alpha, \varphi, \{y_1, \dots, y_n\}, \ell') \in E$ we have

$$Post_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle$$

where

• $\varphi_1 = \varphi_0 \uparrow$

let **time elapse** starting from φ_0 : φ_1 represents all valuations reachable by waiting in ℓ for an arbitrary amount of time.

• $\varphi_2 = \varphi_1 \wedge I(\ell)$

intersect with invariant of ℓ : φ_2 represents the reachable good valuations.

• $\varphi_3 = \varphi_2 \wedge \varphi$

intersect with guard: φ_3 are the reachable good valuations where e is enabled.

• $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$

reset clocks: φ_4 are all possible outcomes of taking e from φ_3

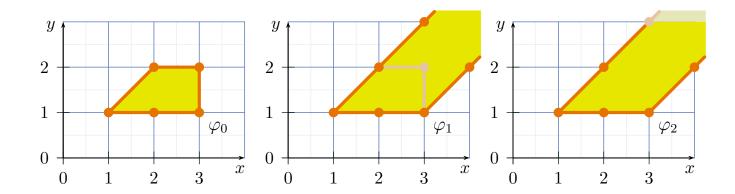
• $\varphi_5 = \varphi_4 \wedge I(\ell')$

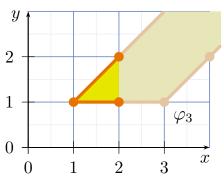
intersect with invariant of ℓ' : φ_5 are the good outcomes of taking e from φ_3

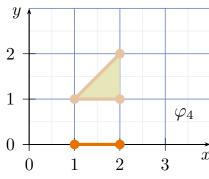
Example

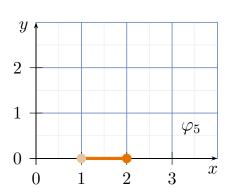
• $\varphi_1 = \varphi_0 \uparrow$

- let time elapse.
- $\varphi_2 = \varphi_1 \wedge I(\ell)$ intersect with invariant of ℓ
- $\varphi_3 = \varphi_2 \wedge \varphi$ intersect with guard
- $\varphi_4 = \varphi_3[y_1 := 0] \dots [y_n := 0]$ reset clocks
- $\varphi_5 = \varphi_4 \wedge I(\ell')$ intersect with invariant of ℓ'









14 - 2014-07-17 - Szones

Difference Bound Matrices

• Given a finite set of clocks X, a **DBM** over X is a mapping

$$M: (X \dot{\cup} \{x_0\} \times X \dot{\cup} \{x_0\}) \to (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$$

• $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c$ (x and y can be x_0).

14 - 2014-07-17 - Szones

Difference Bound Matrices

• Given a finite set of clocks X, a **DBM** over X is a mapping

$$M: (X \dot{\cup} \{x_0\} \times X \dot{\cup} \{x_0\}) \to (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$$

- $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \land N$, M[x := 0] such that
 - all three are again DBM,
 - $M \uparrow$ encodes $\varphi_1 \uparrow$,
 - $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
 - M[x := 0] encodes $\varphi_1[x := 0]$.

14 - 2014-07-17 - Szones -

Difference Bound Matrices

ullet Given a finite set of clocks X, a ldot OBM over X is a mapping

$$M: (X \dot{\cup} \{x_0\} \times X \dot{\cup} \{x_0\}) \to (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$$

- $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \land N$, M[x := 0] such that
 - all three are again DBM,
 - $M \uparrow$ encodes $\varphi_1 \uparrow$,
 - $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
 - M[x := 0] encodes $\varphi_1[x := 0]$.
- And there is a canonical form of DBM canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).

14 - 2014-07-17 - Szones

Difference Bound Matrices

ullet Given a finite set of clocks X, a ldot DBM over X is a mapping

$$M: (X \dot{\cup} \{x_0\} \times X \dot{\cup} \{x_0\}) \to (\{<, \le\} \times \mathbb{Z} \cup \{(<, \infty)\})$$

- $M(x,y)=(\sim,c)$ encodes the conjunct $x-y\sim c$ (x and y can be x_0).
- If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \land N$, M[x := 0] such that
 - all three are again DBM,
 - $M \uparrow$ encodes $\varphi_1 \uparrow$,
 - $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
 - M[x := 0] encodes $\varphi_1[x := 0]$.
- And there is a canonical form of DBM canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).
- ullet Thus: we can define our ' Post ' on DBM, and let our algorithm run on DBM.

14 - 2014-07-17 - Szones -

Pros and cons

- Zone-based reachability analysis usually is explicit wrt. discrete locations:
 - maintains a list of location/zone pairs or
 - maintains a list of location/DBM pairs
 - confined wrt. size of discrete state space
 - avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks
- Region-based analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
 - less dependent on size of discrete state space
 - exponential in number of clocks

References

[Fränzle, 2007] Fränzle, M. (2007). Formale methoden eingebetteter systeme. Lecture, Summer Semester 2007, Carl-von-Ossietzky Universität Oldenburg.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.