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Last Lecture:

e Extended Timed Automata Cont'd
e A Fragment of TCTL
e Testable DC Formulae

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.

Are all DC formulae testable?
What's a TBA and what's the difference to (extended) TA?
What's undecidable for timed (Blichi) automata? ldea of the proof?

e Content:

An untestable DC formula.

Timed Biichi Automata and timed regular languages [Alur and Dill, 1994].

The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
Why this is unfortunate.

Timed regular languages are not everything.
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Untestable DC Formulae
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Recall: Testability
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f

\\

Definition 6.1. A DC formula F' is called testable if an observer
(or test automaton (or monitor)) Ap exists such that for all net-

works A" = C(A4,...,A,) it holds that
NEF iff C(A,...,A Ar) EVO-(Ar.qq)

Otherwise it's called untestable.

\

\

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.
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Untestable DC Formulae

— 16 — 2014-07-29 — Sdctest —

A —A
AF-- -
I\ [-B
BFr—-————- Sl A
C -C
C r————————- - ——— =+ — —

“Whenever we observe a change from A to —A at time t4,
the system has to produce a change from B to =B at some time tg € [ta,t4 + 1]
and a change from C' to —=C' at time tg + 1.

Sketch of Proof: Assume there is Ay such that, for all networks A, we have
N |: F Iff C( /1,,./4;1,/4}7’) |: VD _‘<AF-Qbad)

Assume the number of clocks in Ar is n € INy.
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Untestable DC Formulae Cont’d
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Consider the following time points:

o ty:=1

o thi=tat gy fori=1...,n+1

o to €ty +1— gy ts T L+ g L fori=1,...

with &, —t'y # 1 for 1 <i<n+ 1.

,n+1
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Consider the following time points:

o ty:=1
o th=ta+ g fori=1,...,n+1
s to€lth+1— gyt H 1+ gl fori=1,...,n+1
Witht’b—tiB#lforlgzgn—l—l.
Example: n =3
A7
0
1
Bz
0
1
Cz
0
O T S N S ) VR M 1 t‘éé Time
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Consider the following time points:

o ty:=1

o th=ta+ g fori=1,...,n+1

o to €t +1— gyt + 1+ g L fori=1,...

Withtg—t%#lforlgzgn—l—l.

Example: n =3

; T
tﬁé 3 ime
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A -A
Untestable DC Formulae Cont’d *[ e
Brr————- e N ]
Example: n = 3 o R e N ]
Azl I
0
B, |
%0
C’Il
0
0 1 t}g téB t‘l’;g t‘I}B 21% t2o t?é t‘éé Time

e The shown interpretation Z satisfies assumption of property.
e It has n + 1 candidates to satisfy commitment.
o By choice of %, the commitment is not satisfied; so F' not satisfied.

o Because Ap is a test automaton for F', is has a computation path to ¢paq.

o Because n = 3, Ar can not save all n + 1 time points t5.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— ey 0Dy
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Untestable DC Formulae Cont’d *

0.1
Brr————- —|—————\—l——————|— ______
Example: n = 3 Ol S
1 —
A1 :
0
B |
T
0
1
Cz
0
0 1ty 3 6 th2tL, L t3, i3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

: i 1 1
in2—tg + (1m0 30 D)
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e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not
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c bp-——————-—- + -4 ———— 4 — —

Example: n =3

0 1ty 2 ool 2 43, i3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— 1y 0Dy

e Modify the computation to Z’ such that tico = tiBO + 1.
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Brr—-—————- +-———*+-——4———— —
c bp-——————-—- + -4 ———— 4 — —

Example: n =3

0 1ty 2 ool 2 43, i3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— 1y 0Dy

e Modify the computation to Z’ such that tico = tiBO + 1.
e Then I’ = F, but A reaches qpqq Vvia the same path.
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Untestable DC Formulae Cont’d — *[ TR
Brr————- T
Example: n = 3 o R e N ]

0 1ty 2 ool 2 43, i3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— 1y 0Dy

e Modify the computation to Z’ such that tzg = tiBO + 1.
e Then I’ = F, but A reaches qpqq Vvia the same path.
o Thatis: Ap claims Z' |~ F.
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c bp-——————-—- + -4 ———— 4 — —

Example: n =3

0 1ty 2 ool 2 43, i3 Time

e Because Ap is a test automaton for F', is has a computation path to ¢p,q.

e Thus there is 1 < 45 < n such that all clocks of Ar have a valuation which is not

- i 1 1
in 2 —tg + (— 1y 0Dy

e Modify the computation to Z’ such that t’g = tiBO + 1.
e Then I’ = F, but A reaches qpqq Vvia the same path.
o Thatis: Ap claims Z' |~ F.

e Thus Ap is not a test automaton. Contradiction. 8/37
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Timed Biichi Automata

[Alur and Dill, 1994]
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vs. Timed Automata

press?

¢ = (off,0),0 = (off, 1), 1

press”?

PISC (light, 0,1 5 (light, 3), 4

press?

— (bright,3),4 = . ..

¢ is a computation path and run of A.
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10/37



vs. Timed Automata

press?

¢ = (off,0),0 = (off, 1), 1

press”?

PISC (light, 0,1 5 (light, 3), 4

press?

— (bright,3),4 = . ..

¢ is a computation path and run of A.
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S0

a

z:=0

@

a, t:=0{]|b,x <2
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vs. Timed Automata

press? I

a
S0 52

bl|a a, t:=0{]|b,x <2

New: Given a timed word

¢ = (off.0),0 L (off 1), 1 (a,1), (b, 2), (a,3), (b,4), (a,5), (b,6), ...,

Prest ight, 0),1 25 (light, 3), 4 does A accept it?
press? . .
— (bright,3),4 = ... New: acceptance criterion is

¢ is a computation path and run of A. visiting accepting state infinitely often.

— 16 — 2014-07-29 — Stba —
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Timed Languages
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7

Definition. A time sequence 7 = 71, 7o,... is an infinite sequence of
time values 7; € R, satisfying the following constraints:

(i) Monotonicity:
T increases strictly monotonically, i.e. 7; < 7,41 for all ¢ > 1.

(i) Progress: For every t € RJ, there is some i > 1 such that 7; > .

N
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7

Definition. A time sequence 7 = 71, 7o,... is an infinite sequence of
time values 7; € R, satisfying the following constraints:

(i) Monotonicity:
T increases strictly monotonically, i.e. 7; < 7,41 for all ¢ > 1.

(i) Progress: For every t € RJ, there is some i > 1 such that 7; > .

N

Definition. A timed word over an alphabet X is a pair (o, 7) where

® 0 =01,09, - € X“Is an infinite word over 3, and

e T Is a time sequence.
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Timed Languages
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7

Definition. A time sequence 7 = 71, 7o,... is an infinite sequence of
time values 7; € R, satisfying the following constraints:

(i) Monotonicity:
T increases strictly monotonically, i.e. 7; < 7,41 for all ¢ > 1.

(i) Progress: For every t € RJ, there is some i > 1 such that 7; > .

\

Definition. A timed word over an alphabet X is a pair (o, 7) where

® 0 =01,09, - € X“Is an infinite word over 3, and

e T Is a time sequence.

Definition. A timed language over an alphabet X is a set of timed
words over ..

11/37



Example: Timed Language
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Timed word over alphabet X: a pair (o, 7) where

® 0 =01,09,... Is an infinite word over X, and
e T is a time sequence (strictly (!) monotonic, non-Zeno).

L.+ = {((ab)wﬂ') | di Vg3 >1: (’7’2]' < T9j-1+ 2)}
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Timed Biichi Automata
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7

Definition.
inductively by

The set ®(X) of clock constraints over X is defined

du=x<clc<z|=6]|d A

where x € X and ¢ € Q) is a rational constant.
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Timed Biichi Automata
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r R

Definition. The set ®(X) of clock constraints over X is defined

inductively by
du=x<clc<z|=6]|d A

where x € X and ¢ € Q) is a rational constant.

. _

e )

Definition. A timed Biichi automaton (TBA) A is a tuple
(%,5,S0, X, E, F), where

e X is an alphabet,

e S is a finite set of states, Sop C S is a set of start states,
e X is a finite set of clocks, and

o EC S xS xYx2% x ®(X) gives the set of transitions.

An edge (s,s’,a, )\, d) represents a transition from state s to state s’
on input symbol a. The set A C X gives the clocks to be reset with
this transition, and ¢ is a clock constraint over X.

e ['C S is a set of accepting states.
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Example: TBA
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A=(3,550,X,E,F)
(s,8',a,\,0) € E
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(Accepting) TBA Runs
e )

Definition. A run r, denoted by (5,7), of a TBA (%,S, S0, X, E, F)
over a timed word (o, 7) is an infinite sequence of the form

(80, V) — (51,11) =2 (S9,12) 225 ...
T1 T2 73

with s; € Sand v; : X — ]Rar, satisfying the following requirements:

(& J

— 16 — 2014-07-29 — Stba —
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(Accepting) TBA Runs
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e )

Definition. A run r, denoted by (5,7), of a TBA (%,S, S0, X, E, F)
over a timed word (o, 7) is an infinite sequence of the form

r (8o, V) — (51,01) =2 (S9,10) 225 ...
T1 T2 73

with s; € Sand v; : X — ]Rar, satisfying the following requirements:

e Initiation: sg € Sy and v(x) =0 for all x € X.

o Consecution: for all ¢+ > 1, there is an edge in E of the form
(Si—1,Si, 04, Ai, 0;) such that
o (v;_1+ (7; — Ti—1)) satisfies §; and
o v; = (V14 (1 —Ti—1)) [N :=0].

(& J
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(Accepting) TBA Runs

-

over a timed word (o, 7) is an infinite sequence of the form

r (8o, V) — (51,01) =2 (S9,10) 225 ...
T1 T2 73

e Initiation: sg € Sy and v(x) =0 for all x € X.

(Sz’—la Siy 04y )\Z', 52) such that

o (vi_1+ (7; — 7i_1)) satisfies §; and
o U, = (l/@'_l ain (T@' — T@'_1>)P\@' = 0]

Kinfinitely many ¢ > 0.

Definition. A run r, denoted by (5,7), of a TBA (%,S, S0, X, E, F)

with s; € Sand v; : X — IR,SF, satisfying the following requirements:

o Consecution: for all ¢+ > 1, there is an edge in E of the form

The set inf(r) C S consists of those states s € S such that s = s; for

~

J

— 16 — 2014-07-29 — Stba —
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(Accepting) TBA Runs
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e )

Definition. A run r, denoted by (5,7), of a TBA (%,S, S0, X, E, F)
over a timed word (o, 7) is an infinite sequence of the form

r (8o, V) — (51,01) =2 (S9,10) 225 ...
T1 T2 73

with s; € Sand v; : X — IR,SF, satisfying the following requirements:

e Initiation: sg € Sy and v(x) =0 for all x € X.

o Consecution: for all ¢+ > 1, there is an edge in E of the form
(Sz’—la SZ',O'Z',)\Z',&') such that

o (vi_1+ (7; — 7i_1)) satisfies §; and
o U, = (l/@'_l ain (T@' — T@'_1>)P\@' = 0]

The set inf(r) C S consists of those states s € S such that s = s; for

Klnflnltdy many ¢ > 0. /

Definition. A run r = (5,7) of a TBA over timed word (o, 7) is called
(an) accepting (run) if and only if inf(r) N F # (.

15/37



Example: (Accepting) Runs
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o (50,10) — (s1,11) 25 (s2,12) = ... initial and (s;_1, s:, 04, \i, 0;) € E, s.t.
T2 T3

T1

(Vi—1+(Ti_Ti—1)) IZ di, V; = (V'i—l—'_(Ti_Ti—l))[)\i = 0] Accepting iff 'mf(r)ﬂF ?é 0.

R o
x _O a, x:=0
Timed word: (a,1),(b,2),(a,3),(b,4),(a,5),(b,6),...

e Can we construct any run? Is it accepting?
e Can we construct a non-run?

e Can we construct a (non-)accepting run?
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The Language of a TBA
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Definition. For a TBA A, the language L(.A) of timed words it accepts
is defined to be the set

{(o,7) | A has an accepting run over (o, 7)}.

For short: L(.A) is the language of A.

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.

17/37



Example: Language of a TBA
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L(A) = {(o,7) | A has an accepting run over (o,7)}.

Claim:

L(A) = Lers (={((ab)*,7) [ i V] 202 (125 < Toj-1+2)})

Question: Is L., timed regular or not?
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The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
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The Universality Problem
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e Given: A TBA A over alphabet ..
e Question: Does A accept all timed words over .7

In other words: Is L(A) = {(o,7) | o0 € X%, T time sequence}.
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The Universality Problem
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e Given: A TBA A over alphabet ..
e Question: Does A accept all timed words over .7

In other words: Is L(A) = {(o,7) | o0 € X%, T time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet X accepts all timed words over X is IIi-hard.

(“The class II; consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)
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The Universality Problem
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e Given: A TBA A over alphabet ..
e Question: Does A accept all timed words over .7

In other words: Is L(A) = {(o,7) | o0 € X%, T time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet X accepts all timed words over X is IIi-hard.

(“The class II; consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Biichi Automata (untimed), this is different:

o Let B be a Buchi Automaton over ..
e B is universal if and only if L(B) = 0.
o B such that L(B’") = L(B) is effectively computable.

e Language emptyness is decidable for Buchi Automata.

20/37



Proof ldea

— 16 — 2014-07-29 — Suniv —

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet X accepts all timed words over X is IIi-hard.

Proof ldea:

e Consider a language L ndec
which consists of the recurring computations of a 2-counter machine M.

e Construct a TBA A from M which accepts the complement of L,,4cc, 1.€. with

L (A) — Lundec .

e Then A is universal if and only if L, 4ec IS empty. ..

... which is the case if and only if M doesn’t have a recurring computation.
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Once Again: 2-Counter Mach. (Different Flavour)
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A two-counter machine M

e has two counters C', D and
e a finite program consisting of n instructions.

e An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.
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A two-counter machine M

e has two counters C, D and
e a finite program consisting of n instructions.

e An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.

o A configuration of M is a triple (i, ¢, d):

program counter ¢ € {1,...,n}, values ¢,d € INg of C and D.
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A two-counter machine M

e has two counters C, D and
e a finite program consisting of n instructions.

e An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.

o A configuration of M is a triple (¢, ¢, d):

program counter ¢ € {1,...,n}, values ¢,d € INg of C and D.

e A computation of M is an infinite consecutive sequence

<17 07 O> — <i07 €0, d0>7 <7:17 C1, d1>7 <i27 C2, d2>7 s

that is, (Z;41,¢j41,d;j41) is a result executing instruction ¢; at (i, ¢, d;).
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Once Again: 2-Counter Mach. (Different Flavour)
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A two-counter machine M

e has two counters C, D and
e a finite program consisting of n instructions.

e An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.

o A configuration of M is a triple (¢, ¢, d):

program counter ¢ € {1,...,n}, values ¢,d € INg of C and D.

e A computation of M is an infinite consecutive sequence
(1,0,0) = (ig, co, dp), (i1, c1,d1), (i2, ca, d2), . . .
that is, (Z;41,¢j41,d;j41) is a result executing instruction ¢; at (i, ¢, d;).
A computation of M is called recurring iff i; = 1 for infinitely many 7 € INy.
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Step 1: The Language of Recurring Computations
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o Let M be a 2CM with n instructions.

Wanted: A timed language L.4e. (Over some alphabet) representing exactly
the recurring computations of M.
(In particular s.t. Lypgec = 0 if and only if M has no recurring computation.)

e Choose ¥ = {by,...,b,,a1,a2} as alphabet.

o We represent a configuration (¢, c,d) of M by the sequence

c . d
bi gl...aljgg...agj:blal%

c times d times
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Step 1: The Language of Recurring Computations
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Let Lyndec be the set of the timed words (o, 7) with
C2 d2

o o is of the form b; a'a$ b;,a2al> . ..

o (i1,c1,dy), (i2,co,ds),... is a recurring computation of M.
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Step 1: The Language of Recurring Computations
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Let Lyndec be the set of the timed words (o, 7) with

o o is of the form b; a'a$ b;,a2al> . ..

o (i1,c1,dy), (i2,co,ds),... is a recurring computation of M.

e For all 5 € N,

e the time of ;; is j.
o if Cj+1 — Cj.
for every a; at time ¢ in the interval [j,j + 1]
there is an a1 at time ¢ + 1,
o If Cj_|_1 = Cj —|— 13
for every a; at time ¢ in the interval [j + 1,7 + 2],
except for the last one, there is an a; at time ¢t — 1,
o if Cj+1 = C5 — 1:
for every aq at time ¢ in the interval [j,5 + 1],
except for the last one, there is an a; at time ¢t + 1,

And analogously for the as'’s.
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Step 2: Construct “Observer” for L, e
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Wanted: A TBA A such that L(A) = Lyndec,
i.e., A accepts a timed word (o, 7) if and only if (o,7) & Lyndec-
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Wanted: A TBA A such that L(A) = Lyndec,
i.e., A accepts a timed word (o, 7) if and only if (o,7) & Lyndec-

Approach: What are the reasons for a timed word not to be in L,4ec?
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Step 2: Construct “Observer” for L, e
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Wanted: A TBA A such that L(A) = Lyndec,
i.e., A accepts a timed word (o, 7) if and only if (0,7) & Lyndec-

Approach: What are the reasons for a timed word not to be in L,4ec?
Recall: (o,7) is in Lyyge if and only if:
o 0 =b;a alb;,a2a

® <7:17 C1, d1>7 <7:27 C2, d2>7 <o
IS a recurring computation of M.

e the time of bij IS 7,

[ iij_|_1:Cj (:Cj—l-l,:Cj—l)Z

(i) The b; at time j € IN is missing, or there is a spurious b; at time t €]7,5 + 1].
(i) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j 4+ 1,7 + 2| doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1][.

25/37



Step 2: Construct “Observer” for L, e
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Wanted: A TBA A such that L(A) = Lyndec,
i.e., A accepts a timed word (o, 7) if and only if (0,7) & Lyndec-

Approach: What are the reasons for a timed word not to be in L,4ec?

(i) The b; at time j € IN is missing, or there is a spurious b; at time t €]7,5 + 1].
(ii) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j 4+ 1,7 + 2| doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1][.

Plan: Construct a TBA Ay for case (i), a TBA A;y,;; for case (ii), a TBA
A recur for case (iii), and one TBA A; for each instruction for case (iv).

Then set
A = -AO U -Ainit U Arecu'r U U -Az

1<i<n
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Step 2.(i): Construct Ay
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(i) The b; at time j € IN is missing, or there is a spurious b; at time ¢ €]j, j+1].

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
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Step 2.(ii): Construct A;,;
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(ii) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0).

e It accepts

{(05,7j)jeno | (00 # b1) V (10 #0) V (11 # 1)}
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Step 2.(iii): Construct A, ocur
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(iii) The timed word is not recurring, i.e. it has only finitely many b;.

o A, ccur accepts words with only finitely many b;.
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Step 2.(iv): Construct A,
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(iv) The configuration encoded in [j + 1, j 4+ 2[ doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1][.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. Ay is A2 U---U A8

29/37



Step 2.(iv): Construct A,

— 16 — 2014-07-29 — Suniv —

(iv) The configuration encoded in [j + 1, j 4+ 2[ doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1][.

Example: assume instruction 7 is:
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Increment counter D and jump non-deterministically to instruction 3 or 5.
Once again: stepwise. A7 is AL U--- U AY.

o A} accepts words with b7 at time j but neither b3 nor bs at time j -+ 1.
“Easy to construct.”

o A7 is
« % a1, =1
a
~ b, S z r<l1
lo 2 Uy
rz:=0 w z:=0
x#1
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Step 2.(iv): Construct A,
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(iv) The configuration encoded in [j + 1, j 4+ 2[ doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1][.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.
Once again: stepwise. A7 is AL U--- U AY.

o A} accepts words with b7 at time j but neither b3 nor bs at time j -+ 1.
“Easy to construct.”

o A7 is
« " a1, =1
a
~ b, S z z<l1
lo 2 Uy
rz:=0 v z:=0
x#1

o A2 accepts words which encode unexpected increment of counter C.

o A2,..., AS accept words with missing decrement of D.
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Aha, And...?
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Consequences: Language Inclusion
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e Given: Two TBAs A; and Ay over alphabet B.
e Question: Is L(A;) C L(A2)?

Possible applications of a decision procedure:

e Characterise the allowed behaviour as A5 and model the design as A;.

e Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.
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e Given: Two TBAs A; and Ay over alphabet B.
e Question: Is L(A;) C L(A2)?

Possible applications of a decision procedure:

e Characterise the allowed behaviour as A5 and model the design as A;.

e Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

o If language inclusion was decidable, then we could use it to decide
universality of A by checking

where A,,,.;, is any universal TBA (which is easy to construct).
31/37



Consequences: Complementation

— 16 — 2014-07-29 — Sjaund —

e Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

o Question: Is W timed regular?

Possible applications of a decision procedure:

e Characterise the allowed behaviour as A5 and model the design as A;.
o Automatically construct A3 with L(A3z) = L(A2) and check
0,

L(A1) N L(A3) =

that is, whether the design has any non-allowed behaviour.
e Taking for granted that:

e The intersection automaton is effectively computable.

e The emptyness problem for Buchi automata is decidable.
(Proof by construction of region automaton [Alur and Dill, 1994].)
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e Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

o Question: Is W timed regular?

o If the class of timed regular languages were closed under
complementation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the IIi-hardness of the inclusion
problem.” [Alur and Dill, 1994]
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e Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

o Question: Is W timed regular?

o If the class of timed regular languages were closed under
complementation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the IIi-hardness of the inclusion

problem.” [Alur and Dill, 1994]

A non-complementable TBA A:
a a a

NG ETIRG BVEN G

L(A) = {(a*, (t)iew,) | 31 € No 3j > i1 (t; = t; + 1)}

Complement language:

L(A) = {(a”, (t;)icn,) | no two a are separated by distance 1}. 33/37
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Beyond Timed Regular
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Beyond Timed Regular
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With clock constraints of the form
r+y<a+y

we can describe timed languages which are not timed regular.

In other words:

e There are strictly more timed languages than timed regular languages.

o There exists timed languages L such that there exists no A with L(A) = L.

Example:

{((abc)”,7) |V j.(735 — T3j—1) = 2(735-1 — T3j—2) }
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