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Last Lecture:

• DC (un)decidability

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• what’s notable about TA syntax? What’s simple clock constraint?

• what’s a configuration of a TA? When are two in transition relation?

• what’s the difference between guard and invariant? Why have both?

• what’s a computation path? A run? Zeno behaviour?

• Content:

• Timed automata syntax

• TA operational semantics
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Introduction

• First-order Logic

• Duration Calculus (DC)

• Semantical Correctness
Proofs with DC

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• Extended Timed Automata

• Undecidability Results

obs : Time → D(obs) 〈obs0, ν0〉, t0
λ0−→ 〈obs1, ν1〉, t1 . . .

• Automatic Verification...

• ...whether TA satisfies DC formula, observer-based
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off light bright
press? press?

press?

press?
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

User:

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press? Problems:

• Deadlock freedom
[Behrmann et al., 2004]

• Location Reachability
(“Is this user able to reach
‘bright’?”)

• Constraint Reachability
(“Can the controller’s clock
go past 5?”)

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!
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• Pure TA syntax off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• channels, actions

• (simple) clock constraints

• Def. TA

• Pure TA operational semantics

• clock valuation, time shift, modification

• operational semantics

• discussion

• Transition sequence, computation path, run

• Network of TA
off light bright

press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

• parallel composition (syntactical)

• restriction

• network of TA semantics

• Uppaal Demo

• Region abstraction; zones

• Extended TA; Logic of Uppaal
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To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.
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To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

• For each channel a ∈ Chan, two visible actions:
a? and a! denote input and output on the channel (a?, a! /∈ Chan).

• τ /∈ Chan represents an internal action, not visible from outside.

• (α, β ∈) Act := {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ}
is the set of actions.
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To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

• For each channel a ∈ Chan, two visible actions:
a? and a! denote input and output on the channel (a?, a! /∈ Chan).

• τ /∈ Chan represents an internal action, not visible from outside.

• (α, β ∈) Act := {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ}
is the set of actions.

• An alphabet B is a set of channels, i.e. B ⊆ Chan.

• For each alphabet B, we define the corresponding action set

B?! := {a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ}.

• Note: Chan?! = Act .
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!
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• Let (x, y ∈) X be a set of clock variables (or clocks).

• The set (ϕ ∈) Φ(X) of (simple) clock constraints (over X) is defined by
the following grammar:

ϕ ::= x ∼ c | x− y ∼ c | ϕ1 ∧ ϕ2

where

• x, y ∈ X,

• c ∈ Q+
0 , and

• ∼∈ {<,>,≤,≥}.

• Clock constraints of the form x− y ∼ c are called difference constraints.
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!
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Definition 4.3. [Timed automaton]
A (pure) timed automaton A is a structure

A = (L,B,X, I, E, ℓini)

where

• (ℓ ∈) L is a finite set of locations (or control states),

• B ⊆ Chan,

• X is a finite set of clocks,

• I : L → Φ(X) assigns to each location a clock constraint,
its invariant,

• E ⊆ L×B?! × Φ(X)× 2X × L a finite set of directed edges.

Edges (ℓ, α, ϕ, Y, ℓ′) from location ℓ to ℓ′ are labelled with an
action α, a guard ϕ, and a set Y of clocks that will be reset.

• ℓini is the initial location.
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A = (L,B,X, I, E, ℓini)

• Locations (control states) and their invariants:

ℓ
I(ℓ)

ℓini
I(ℓini)

or

ℓ

I(ℓ)

ℓini

I(ℓini)

• Edges: (ℓ, α, ϕ, Y, ℓ′) ∈ L×B?! × Φ(X)× 2X × L

ℓ
x < 3

ℓ′

y < 10

a!

x ≤ 3 ∧ y > 2

x := 0
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• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).
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• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).

• Let ϕ be a clock constraint.
The satisfaction relation between clock valuations ν and clock constraints
ϕ, denoted by ν |= ϕ, is defined inductively:

• ν |= x ∼ c iff ν(x) ∼ c

• ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c

• ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2
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• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).

• Let ϕ be a clock constraint.
The satisfaction relation between clock valuations ν and clock constraints
ϕ, denoted by ν |= ϕ, is defined inductively:

• ν |= x ∼ c iff ν(x) ∼ c

• ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c

• ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2

• Two clock constraints ϕ1 and ϕ2 are called (logically) equivalent if and
only if for all clock valuations ν, we have

ν |= ϕ1 if and only if ν |= ϕ2.

In that case we write |= ϕ1 ⇐⇒ ϕ2.
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Let ν be a valuation of clocks in X and t ∈ Time.

• Time Shift

We write ν + t to denote the clock valuation (for X) with

(ν + t)(x) = ν(x) + t.

for all x ∈ X,
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Let ν be a valuation of clocks in X and t ∈ Time.

• Time Shift

We write ν + t to denote the clock valuation (for X) with

(ν + t)(x) = ν(x) + t.

for all x ∈ X,

• Modification

Let Y ⊆ X be a set of clocks.
We write ν[Y := t] to denote the clock valuation with

(ν[Y := t])(x) =

{

t , if x ∈ Y

ν(x) , otherwise

Special case reset: t = 0.
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Definition 4.4. The operational semantics of a timed automaton

A = (L,B,X, I, E, ℓini)

is defined by the (labelled) transition system

T (A) = (Conf (A),Time ∪B?!, {
λ
−→| λ ∈ Time ∪B?!}, Cini)

where

• Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)}

• Time ∪B?! are the transition labels,

• there are delay transition relations

〈ℓ, ν〉
λ
−→ 〈ℓ′, ν ′〉, λ ∈ Time

and action transition relations

〈ℓ, ν〉
λ
−→ 〈ℓ′, ν ′〉, λ ∈ B?!. (→ later slides)

• Cini = {〈ℓini , ν0〉} ∩ Conf (A) with ν0(x) = 0 for all x ∈ X
is the set of initial configurations.
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A = (L,B,X, I, E, ℓini)

T (A) = (Conf (A),Time ∪B?!, {
λ
−→| λ ∈ Time ∪B?!}, Cini)

• Time or delay transition:

〈ℓ, ν〉
t
−→ 〈ℓ, ν + t〉

if and only if ∀ t′ ∈ [0, t] : ν + t′ |= I(ℓ).

“Some time t ∈ Time elapses respecting invariants, location unchanged.”

• Action or discrete transition:

〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉

if and only if there is (ℓ, α, ϕ, Y, ℓ′) ∈ E such that

ν |= ϕ, ν ′ = ν[Y := 0], and ν ′ |= I(ℓ′).

“An action occurs, location may change, some clocks may be reset,

time does not advance.”
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• A transition sequence of A is any finite or infinite sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

with

• 〈ℓ0, ν0〉 ∈ Cini ,

• for all i ∈ N, there is
λi+1
−−−→ in T (A) with 〈ℓi, νi〉

λi+1
−−−→ 〈ℓi+1, νi+1〉
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• A transition sequence of A is any finite or infinite sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

with

• 〈ℓ0, ν0〉 ∈ Cini ,

• for all i ∈ N, there is
λi+1
−−−→ in T (A) with 〈ℓi, νi〉

λi+1
−−−→ 〈ℓi+1, νi+1〉

• A configuration 〈ℓ, ν〉 is called reachable (in A) if and only if there is a
transition sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

• A location ℓ is called reachable if and only if any configuration 〈ℓ, ν〉 is
reachable, i.e. there exists a valuation ν such that 〈ℓ, ν〉 is reachable.
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off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

〈off, x = 0〉
2.5
−−→ 〈off, x = 2.5〉

1.7
−−→ 〈off, x = 4.2〉

press?
−−−−→ 〈light, x = 0〉

2.1
−−→ 〈light, x = 2.1〉

press?
−−−−→ 〈bright, x = 2.1〉

10
−→ 〈bright, x = 12.1〉

press?
−−−−→ 〈off, x = 12.1〉

press?
−−−−→ 〈light, x = 0〉

0
−→ 〈light, x = 0〉
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Recall the user model for our light controller:

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

• “Good” configurations:

〈ℓ1, y = 0〉, 〈ℓ1, y = 1.9〉, 〈ℓ2, y = 1000〉,

〈ℓ2, y = 0.5〉, 〈ℓ3, y = 27〉

• “Bad” configurations:

〈ℓ1, y = 2.0〉, 〈ℓ1, y = 2.5〉
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• The approach taken for TA:

• Rule out bad configurations in the step from A to T (A).

“Bad” configurations are not even configurations!

• Recall Definition 4.4:

• Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)}

• Cini = {〈ℓini , ν0〉} ∩ Conf (A)

• Note: Being in Conf (A) doesn’t mean to be reachable.

• The approach not taken for TA:

• consider every 〈ℓ, ν〉 to be a configuration, i.e. have

Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time ////////////, ν |= I(ℓ)}

• “bad” configurations not in transition relation with others, i.e. have, e.g.,

〈ℓ, ν〉
t

−→ 〈ℓ, ν + t〉

if and only if ∀ t′ ∈ [0, t] : ν + t′ |= I(ℓ) and ν + t′ |= I(ℓ′).
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• 〈ℓ, ν〉, t is called time-stamped configuration

• time-stamped delay transition: 〈ℓ, ν〉, t
t′
−→ 〈ℓ, ν + t′〉, t+ t′

iff t′ ∈ Time and 〈ℓ, ν〉
t′
−→ 〈ℓ, ν + t′〉.

• time-stamped action transition: 〈ℓ, ν〉, t
α
−→ 〈ℓ′, ν ′〉, t

iff α ∈ B?! and 〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉.
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• 〈ℓ, ν〉, t is called time-stamped configuration

• time-stamped delay transition: 〈ℓ, ν〉, t
t′
−→ 〈ℓ, ν + t′〉, t+ t′

iff t′ ∈ Time and 〈ℓ, ν〉
t′
−→ 〈ℓ, ν + t′〉.

• time-stamped action transition: 〈ℓ, ν〉, t
α
−→ 〈ℓ′, ν ′〉, t

iff α ∈ B?! and 〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉.

• A sequence of time-stamped configurations

ξ = 〈ℓ0, ν0〉, t0
λ1−→ 〈ℓ1, ν1〉, t1

λ2−→ 〈ℓ2, ν2〉, t2
λ3−→ . . .

is called computation path (or path) of A starting in 〈ℓ0, ν0〉, t0
if and only if it is either infinite or maximally finite.

• A computation path (or path) is a computation path starting at 〈ℓ0, ν0〉, 0
where 〈ℓ0, ν0〉 ∈ Cini .
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ℓ
x ≤ 2

ℓ′

x ≤ 3

a?
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ℓ
x ≤ 2

ℓ′

x ≤ 3

a?

• Timelock:
〈ℓ, x = 0〉, 0

2
−→ 〈ℓ, x = 2〉, 2

〈ℓ′, x = 0〉, 0
3
−→ 〈ℓ′, x = 3〉, 3

a?
−→ 〈ℓ′, x = 3〉, 3

a?
−→ . . .

• Zeno behaviour:

〈ℓ, x = 0〉, 0
1/2
−−→ 〈ℓ, x = 1/2〉,

1

2

1/4
−−→ 〈ℓ, x = 3/4〉,

3

4
. . .

1/2n

−−−→ 〈ℓ, x = (2n − 1)/2n〉,
2n − 1

2n
. . .
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Definition 4.9. An infinite sequence

t0, t1, t2, . . .

of values ti ∈ Time for i ∈ N0 is called real-time sequence if and
only if it has the following properties:

• Monotonicity:
∀ i ∈ N0 : ti ≤ ti+1

• Non-Zeno behaviour (or unboundedness or progress):

∀ t ∈ Time ∃ i ∈ N0 : t < ti
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Definition 4.10. A run of A starting in the time-stamped config-
uration 〈ℓ0, ν0〉, t0 is an infinite computation path of A

ξ = 〈ℓ0, ν0〉, t0
λ1−→ 〈ℓ1, ν1〉, t1

λ2−→ 〈ℓ2, ν2〉, t2
λ3−→ . . .

where (ti)i∈N0
is a real-time sequence.

If 〈ℓ0, ν0〉 ∈ Cini and t0 = 0, then we call ξ a run of A.

Example:

ℓ
x ≤ 2
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ℓ0 ℓ1

s?, x < 10, x := 0

a!

x ≥ 10

a!
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