
–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

Real-Time Systems

Lecture 11: Timed Automata

2014-07-01

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
p
re
li
m

–

2/32

Last Lecture:

• DC (un)decidability

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• what’s notable about TA syntax? What’s simple clock constraint?

• what’s a configuration of a TA? When are two in transition relation?

• what’s the difference between guard and invariant? Why have both?

• what’s a computation path? A run? Zeno behaviour?

• Content:

• Timed automata syntax

• TA operational semantics

Content
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
p
re
li
m

–

3/32

Introduction

• First-order Logic

• Duration Calculus (DC)

• Semantical Correctness
Proofs with DC

• DC Decidability

• DC Implementables

• PLC-Automata

• Timed Automata (TA), Uppaal

• Networks of Timed Automata

• Region/Zone-Abstraction

• Extended Timed Automata

• Undecidability Results

obs : Time → D(obs) 〈obs0, ν0〉, t0
λ0−→ 〈obs1, ν1〉, t1 . . .

• Automatic Verification...

• ...whether TA satisfies DC formula, observer-based

Recall: Tying It All Together
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
p
re
li
m

–

4/32

abstraction

level

formal

description

language I

semantic

integration

automatic

verification

formal descr.

language II

Require-
ments

Duration
Calculus

Constraint
Diagrams

DC timed
automata

Live Seq.
Charts

satisfied by ⇒ ‖

Designs PLC-Automata DC
timed

automata

Programs C code
PLC code

logical

semantics

logical

semantics

compiler

(

equiv.

equiv.

equiv.

operational semantics

operational semantics

Example: Off/Light/Bright

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

5/32

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ex
a
–

6/32

off light bright
press? press?

press?

press?

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ex
a
–

6/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ex
a
–

6/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

User:

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

Example Cont’d
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ex
a
–

7/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press? Problems:

• Deadlock freedom
[Behrmann et al., 2004]

• Location Reachability
(“Is this user able to reach
‘bright’?”)

• Constraint Reachability
(“Can the controller’s clock
go past 5?”)

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

Plan
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ex
a
–

8/32

• Pure TA syntax off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• channels, actions

• (simple) clock constraints

• Def. TA

• Pure TA operational semantics

• clock valuation, time shift, modification

• operational semantics

• discussion

• Transition sequence, computation path, run

• Network of TA
off light bright

press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

‖

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

• parallel composition (syntactical)

• restriction

• network of TA semantics

• Uppaal Demo

• Region abstraction; zones

• Extended TA; Logic of Uppaal

Pure TA Syntax

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

9/32

Channel Names and Actions
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

10/32

To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

Channel Names and Actions
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

10/32

To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

• For each channel a ∈ Chan, two visible actions:
a? and a! denote input and output on the channel (a?, a! /∈ Chan).

• τ /∈ Chan represents an internal action, not visible from outside.

• (α, β ∈) Act := {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ}
is the set of actions.

Channel Names and Actions
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

10/32

To define timed automata formally, we need the following sets of symbols:

• A set (a, b ∈) Chan of channel names or channels.

• For each channel a ∈ Chan, two visible actions:
a? and a! denote input and output on the channel (a?, a! /∈ Chan).

• τ /∈ Chan represents an internal action, not visible from outside.

• (α, β ∈) Act := {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ}
is the set of actions.

• An alphabet B is a set of channels, i.e. B ⊆ Chan.

• For each alphabet B, we define the corresponding action set

B?! := {a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ}.

• Note: Chan?! = Act .

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

11/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

Simple Clock Constraints
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

12/32

• Let (x, y ∈) X be a set of clock variables (or clocks).

• The set (ϕ ∈) Φ(X) of (simple) clock constraints (over X) is defined by
the following grammar:

ϕ ::= x ∼ c | x− y ∼ c | ϕ1 ∧ ϕ2

where

• x, y ∈ X,

• c ∈ Q+
0 , and

• ∼∈ {<,>,≤,≥}.

• Clock constraints of the form x− y ∼ c are called difference constraints.

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

13/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

Timed Automaton
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

14/32

Definition 4.3. [Timed automaton]
A (pure) timed automaton A is a structure

A = (L,B,X, I, E, ℓini)

where

• (ℓ ∈) L is a finite set of locations (or control states),

• B ⊆ Chan,

• X is a finite set of clocks,

• I : L → Φ(X) assigns to each location a clock constraint,
its invariant,

• E ⊆ L×B?! × Φ(X)× 2X × L a finite set of directed edges.

Edges (ℓ, α, ϕ, Y, ℓ′) from location ℓ to ℓ′ are labelled with an
action α, a guard ϕ, and a set Y of clocks that will be reset.

• ℓini is the initial location.

Graphical Representation of Timed Automata
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
sy
n
–

15/32

A = (L,B,X, I, E, ℓini)

• Locations (control states) and their invariants:

ℓ
I(ℓ)

ℓini
I(ℓini)

or

ℓ

I(ℓ)

ℓini

I(ℓini)

• Edges: (ℓ, α, ϕ, Y, ℓ′) ∈ L×B?! × Φ(X)× 2X × L

ℓ
x < 3

ℓ′

y < 10

a!

x ≤ 3 ∧ y > 2

x := 0

Pure TA Operational Semantics

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

16/32

Clock Valuations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

17/32

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).

Clock Valuations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

17/32

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).

• Let ϕ be a clock constraint.
The satisfaction relation between clock valuations ν and clock constraints
ϕ, denoted by ν |= ϕ, is defined inductively:

• ν |= x ∼ c iff ν(x) ∼ c

• ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c

• ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2

Clock Valuations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

17/32

• Let X be a set of clocks. A valuation ν of clocks in X is a mapping

ν : X → Time

assigning each clock x ∈ X the current time ν(x).

• Let ϕ be a clock constraint.
The satisfaction relation between clock valuations ν and clock constraints
ϕ, denoted by ν |= ϕ, is defined inductively:

• ν |= x ∼ c iff ν(x) ∼ c

• ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c

• ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2

• Two clock constraints ϕ1 and ϕ2 are called (logically) equivalent if and
only if for all clock valuations ν, we have

ν |= ϕ1 if and only if ν |= ϕ2.

In that case we write |= ϕ1 ⇐⇒ ϕ2.

Operations on Clock Valuations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

18/32

Let ν be a valuation of clocks in X and t ∈ Time.

• Time Shift

We write ν + t to denote the clock valuation (for X) with

(ν + t)(x) = ν(x) + t.

for all x ∈ X,

Operations on Clock Valuations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

18/32

Let ν be a valuation of clocks in X and t ∈ Time.

• Time Shift

We write ν + t to denote the clock valuation (for X) with

(ν + t)(x) = ν(x) + t.

for all x ∈ X,

• Modification

Let Y ⊆ X be a set of clocks.
We write ν[Y := t] to denote the clock valuation with

(ν[Y := t])(x) =

{

t , if x ∈ Y

ν(x) , otherwise

Special case reset: t = 0.

Operational Semantics of TA
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

19/32

Definition 4.4. The operational semantics of a timed automaton

A = (L,B,X, I, E, ℓini)

is defined by the (labelled) transition system

T (A) = (Conf (A),Time ∪B?!, {
λ
−→| λ ∈ Time ∪B?!}, Cini)

where

• Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)}

• Time ∪B?! are the transition labels,

• there are delay transition relations

〈ℓ, ν〉
λ
−→ 〈ℓ′, ν ′〉, λ ∈ Time

and action transition relations

〈ℓ, ν〉
λ
−→ 〈ℓ′, ν ′〉, λ ∈ B?!. (→ later slides)

• Cini = {〈ℓini , ν0〉} ∩ Conf (A) with ν0(x) = 0 for all x ∈ X
is the set of initial configurations.

Operational Semantics of TA Cont’d
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

20/32

A = (L,B,X, I, E, ℓini)

T (A) = (Conf (A),Time ∪B?!, {
λ
−→| λ ∈ Time ∪B?!}, Cini)

• Time or delay transition:

〈ℓ, ν〉
t
−→ 〈ℓ, ν + t〉

if and only if ∀ t′ ∈ [0, t] : ν + t′ |= I(ℓ).

“Some time t ∈ Time elapses respecting invariants, location unchanged.”

• Action or discrete transition:

〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉

if and only if there is (ℓ, α, ϕ, Y, ℓ′) ∈ E such that

ν |= ϕ, ν ′ = ν[Y := 0], and ν ′ |= I(ℓ′).

“An action occurs, location may change, some clocks may be reset,

time does not advance.”

Transition Sequences, Reachability
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

21/32

• A transition sequence of A is any finite or infinite sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

with

• 〈ℓ0, ν0〉 ∈ Cini ,

• for all i ∈ N, there is
λi+1
−−−→ in T (A) with 〈ℓi, νi〉

λi+1
−−−→ 〈ℓi+1, νi+1〉

Transition Sequences, Reachability
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

21/32

• A transition sequence of A is any finite or infinite sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

with

• 〈ℓ0, ν0〉 ∈ Cini ,

• for all i ∈ N, there is
λi+1
−−−→ in T (A) with 〈ℓi, νi〉

λi+1
−−−→ 〈ℓi+1, νi+1〉

• A configuration 〈ℓ, ν〉 is called reachable (in A) if and only if there is a
transition sequence of the form

〈ℓ0, ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

• A location ℓ is called reachable if and only if any configuration 〈ℓ, ν〉 is
reachable, i.e. there exists a valuation ν such that 〈ℓ, ν〉 is reachable.

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

22/32

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

〈off, x = 0〉
2.5
−−→ 〈off, x = 2.5〉

1.7
−−→ 〈off, x = 4.2〉

press?
−−−−→ 〈light, x = 0〉

2.1
−−→ 〈light, x = 2.1〉

press?
−−−−→ 〈bright, x = 2.1〉

10
−→ 〈bright, x = 12.1〉

press?
−−−−→ 〈off, x = 12.1〉

press?
−−−−→ 〈light, x = 0〉

0
−→ 〈light, x = 0〉

Discussion: Set of Configurations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

23/32

Recall the user model for our light controller:

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

press!

y := 0
y < 2

press! press!

y := 0

press!

y > 3press!

• “Good” configurations:

〈ℓ1, y = 0〉, 〈ℓ1, y = 1.9〉, 〈ℓ2, y = 1000〉,

〈ℓ2, y = 0.5〉, 〈ℓ3, y = 27〉

• “Bad” configurations:

〈ℓ1, y = 2.0〉, 〈ℓ1, y = 2.5〉

Two Approaches to Exclude “Bad” Configurations
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
se
m

–

24/32

• The approach taken for TA:

• Rule out bad configurations in the step from A to T (A).

“Bad” configurations are not even configurations!

• Recall Definition 4.4:

• Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)}

• Cini = {〈ℓini , ν0〉} ∩ Conf (A)

• Note: Being in Conf (A) doesn’t mean to be reachable.

• The approach not taken for TA:

• consider every 〈ℓ, ν〉 to be a configuration, i.e. have

Conf (A) = {〈ℓ, ν〉 | ℓ ∈ L, ν : X → Time ////////////, ν |= I(ℓ)}

• “bad” configurations not in transition relation with others, i.e. have, e.g.,

〈ℓ, ν〉
t

−→ 〈ℓ, ν + t〉

if and only if ∀ t′ ∈ [0, t] : ν + t′ |= I(ℓ) and ν + t′ |= I(ℓ′).

Computation Path, Run

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

25/32

Computation Paths
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

26/32

• 〈ℓ, ν〉, t is called time-stamped configuration

• time-stamped delay transition: 〈ℓ, ν〉, t
t′
−→ 〈ℓ, ν + t′〉, t+ t′

iff t′ ∈ Time and 〈ℓ, ν〉
t′
−→ 〈ℓ, ν + t′〉.

• time-stamped action transition: 〈ℓ, ν〉, t
α
−→ 〈ℓ′, ν ′〉, t

iff α ∈ B?! and 〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉.

Computation Paths
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

26/32

• 〈ℓ, ν〉, t is called time-stamped configuration

• time-stamped delay transition: 〈ℓ, ν〉, t
t′
−→ 〈ℓ, ν + t′〉, t+ t′

iff t′ ∈ Time and 〈ℓ, ν〉
t′
−→ 〈ℓ, ν + t′〉.

• time-stamped action transition: 〈ℓ, ν〉, t
α
−→ 〈ℓ′, ν ′〉, t

iff α ∈ B?! and 〈ℓ, ν〉
α
−→ 〈ℓ′, ν ′〉.

• A sequence of time-stamped configurations

ξ = 〈ℓ0, ν0〉, t0
λ1−→ 〈ℓ1, ν1〉, t1

λ2−→ 〈ℓ2, ν2〉, t2
λ3−→ . . .

is called computation path (or path) of A starting in 〈ℓ0, ν0〉, t0
if and only if it is either infinite or maximally finite.

• A computation path (or path) is a computation path starting at 〈ℓ0, ν0〉, 0
where 〈ℓ0, ν0〉 ∈ Cini .

Timelocks and Zeno Behaviour
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

27/32

ℓ
x ≤ 2

ℓ′

x ≤ 3

a?

Timelocks and Zeno Behaviour
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

27/32

ℓ
x ≤ 2

ℓ′

x ≤ 3

a?

• Timelock:
〈ℓ, x = 0〉, 0

2
−→ 〈ℓ, x = 2〉, 2

〈ℓ′, x = 0〉, 0
3
−→ 〈ℓ′, x = 3〉, 3

a?
−→ 〈ℓ′, x = 3〉, 3

a?
−→ . . .

• Zeno behaviour:

〈ℓ, x = 0〉, 0
1/2
−−→ 〈ℓ, x = 1/2〉,

1

2

1/4
−−→ 〈ℓ, x = 3/4〉,

3

4
. . .

1/2n

−−−→ 〈ℓ, x = (2n − 1)/2n〉,
2n − 1

2n
. . .

Real-Time Sequence
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

28/32

Definition 4.9. An infinite sequence

t0, t1, t2, . . .

of values ti ∈ Time for i ∈ N0 is called real-time sequence if and
only if it has the following properties:

• Monotonicity:
∀ i ∈ N0 : ti ≤ ti+1

• Non-Zeno behaviour (or unboundedness or progress):

∀ t ∈ Time ∃ i ∈ N0 : t < ti

Run
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

29/32

Definition 4.10. A run of A starting in the time-stamped config-
uration 〈ℓ0, ν0〉, t0 is an infinite computation path of A

ξ = 〈ℓ0, ν0〉, t0
λ1−→ 〈ℓ1, ν1〉, t1

λ2−→ 〈ℓ2, ν2〉, t2
λ3−→ . . .

where (ti)i∈N0
is a real-time sequence.

If 〈ℓ0, ν0〉 ∈ Cini and t0 = 0, then we call ξ a run of A.

Example:

ℓ
x ≤ 2

Example
–
1
1
–
2
0
1
4
-0
7
-0
1
–
S
ta
ru
n
–

30/32

ℓ0 ℓ1

s?, x < 10, x := 0

a!

x ≥ 10

a!

References

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

31/32

–
1
1
–
2
0
1
4
-0
7
-0
1
–
m
a
in

–

32/32

[Behrmann et al., 2004] Behrmann, G., David, A., and Larsen, K. G. (2004).
A tutorial on uppaal 2004-11-17. Technical report, Aalborg University,
Denmark.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time
Systems - Formal Specification and Automatic Verification. Cambridge
University Press.

	Contents & Goals
	Content
	Recall: Tying It All Together
	Example: Off/Light/Bright
	Example
	Example Cont'd
	Plan

	Pure TA Syntax
	Channel Names and Actions
	Example
	Simple Clock Constraints
	Example
	Timed Automaton
	Graphical Representation of Timed Automata

	Pure TA Operational Semantics
	Clock Valuations
	Operations on Clock Valuations
	Operational Semantics of TA
	Operational Semantics of TA Cont'd
	Transition Sequences, Reachability
	Example
	Discussion: Set of Configurations
	Two Approaches to Exclude ``Bad'' Configurations

	Computation Path, Run
	Computation Paths
	Timelocks and Zeno Behaviour
	Real-Time Sequence
	Run
	Example

	References
	

