Contents & Goals

Last Lecture:
o Extended Timed Automata Cont'd

Real-Time Systems « A Fragment of TCTL
« Testable DC Formulae

Lecture 16: The Universality Problem for TBA This Lecture:

» Educational Objectives: Capabi

Untestable DC Formulae

ies for following tasks/questions.

o Are all DC formulae testable?
2014-07-29 » What's a TBA and what's the difference to (extended) TA?
 What's undecidable for timed (Biichi) automata? Idea of the proof?

Dr. Bernd Westphal o Content:
© An untestable DC formula. H

Albert-Ludwigs-Universitit Freiburg, Germany « Timed Biichi Automata and timed regular languages [Alur and Dill, 1094].
5« The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
%« Why this is unfortunate.
i © '« Timed regular languages are not everything. 2 ; 3w
Recall: Testability Untestable DC Formulae . p Untestable DC Formulae Cont’d
—_— A RN
womnghon el tym] Consider the following time points:
Defi n 6.1. A DC formula F is called testable if an observer R o tai=1 =
or test automaton (or monitor)) Ap exists such that for all net- - .
“a% N =C(Ar,. A Ay it TOV_WM that otk . L=t o tpi=tat gy fpri=1
o to €]ty + 1y th+ 1+ g [fori=1....n+1

with t —tp #1for 1 <i<n+1.

i /7

NEF iff C(A,..., Ay, Ap) | YO (AF-uad)

“Whenever we observe a change from A to —A at time ¢4,
the system has to produce a change from B to —B at some time tp € [ta,t4 + 1]

Otherwise it's called untestable. ;
and a change from C' to —C at time t5 + 1. Example: n =3 g+

. 1
et (.8, Thewe eds: amesiEkie BE fGmulke. Sketch of Proof: Assume there is Ay such that, for all networks A/, we have ,&o
+ + . If— = =
| g NEF iff C(AL,..., Ay Ar) = VO ~(AF.qraa) Bry R
, o

Assume the number of clocks in Ap is n € Ny.

g Time

0 1th 1

014-0;

& Theorem 6.4. DC implementables are testable.

~16 -2

Untestable DC Formulae Cont’d ~ *

Untestable DC Formulae Cont’d *

Example: n =3

1y Time

The shown interpretation Z satisfies assumption of property.
It has n + 1 candidates to satisfy commitment.
By choice of t{., the commitment is not satisf

; so F' not satisfied.

Because Ay is a test automaton for F, is has a computation path to gpaq.

* Because n = 3, Ap can not save all n+ 1 time points ;.

Thus there is 1 < ig < n such that all clocks of A have a valuation which is not
in 2 — 18+ (=0, L)
B A(n+1)” 4(n+1)

L= %o e3* | 4559, - M? 567

baab €7L04) c @)t
b €7 L(H) 86 N
ba € L0H) 3 Num —0
e o0& H—
abc € L) ol v
ala ¥
PYSIEN

16 - 2014-07-2

Example: n =3

Because Ay is a test automaton for s has a computation path to gpaq.

Thus there is 1 < ip < n such that all clocks of A have a valuation which is not

; 1 1
in 2 =8 + (= gy aen)

o Modify the computation to Z’ such that =ty + 1

Then I’ = F, but Ap reaches gyoq via the same path.

That is: Ap claims 7' [~ F.

Thus A is not a test automaton. Contradiction. 837

G
Lh<{es,..eD°] 10591y, -
st kg

3 e)”

Timed Biichi Automata

[Alur and Dill, 1994]

... vs. Timed Automata Timed Languages Example: Timed Language

press?

Timed word over alphabet ¥: a pair (o, 7) where
Definition. A time sequence T = 71, 7y,... is an infinite sequence of n
F— ® 0 =01,02,... is an infinite word over X, and

me values 7; € Ry, satisfying the following constraints: ok y
3 Pz B o 7 is a time sequence (strictly (!) monotonic, non-Zeno).

(i) Monotonicity: . .

T increases strictly monotonically, i.e. 7; < 74 for all i > 1. »b M, \MM:» {m
New: Given a timed whrd Progress: For every t € R, there is some i > 1 such that 7; > . P
(a,1), (b,2), (a,3), (b, 4), (a,5), (b,6),(b 68 Lert ={((ab)*,7) | 3iVj = i: (r2; < 71 +2)}

&= (off,0),0 & (off 1), 1

press? . 3 i+
£ (ight. 0,1 = (lght.), 4 does A accept it? Definition. A timed word over an alphabet 3 is a pair (,7) where L L L
B (bright, 3),4 < .. New: acceptance criterion is =i A over 5, and a a abab oalb oo
. IR © 0=01,00,"+ € is an infinite word over ¥, an:
¢ is a computation path and run of A. ng accepting state ely often o [“3-)
) o 7 is a time sequence. . 20 W0
2 N.mv.Nw =100
%

Tppen 42 =042 3.0

H Def n. A timed language over an alphabet ¥ is a set of timed
: . words over 3.
0 10737 0 1137
Timed Biichi Automata nol shuopl ! Example: TBA (Accepting) TBA Runs
4 .
Definition. The set ®(X) of clock constraints over X is defined A=(%,5,8,X,E,F) Definition. A run r, denoted by (5,7), of a TBA (5,5, 5, X, E, F)
inductively by (s,8',a,\,0) € E over a timed word (o, 7) is an infinite sequence of the form
Su=az<cle<z|-0|8 A = = @
72 (S0, v0) > (s1,1) = (s2,02) 7 ...
where z € X and ¢ € Q is a rational constant. m J s
with s; € S and v; : X — Ry}, satisfying the following requirements:
Definition. A timed Biichi automaton (TBA) A is a tuple o Ini n: so € So and v(z) =0 for all = € X.
(%, 8,50, X, E, F), where o Consecution: for all @ > 1, there is an edge in E of the form
(Si—1, 8i, 04, Ai, 6;) such that
o ¥ is an alphabet, o (Vi—1 + (1 — Ti—1)) satisfies §; and
» S is a finite set of states, Sy C S is a set of start states,
) o Vi = (Vi1 + (7 = 7)) = 0].

¢ X is a finite set of clocks, and

e ECSxSx3x2¥ x ®(X) gives the set of transitions. j ' The set inf(r) C S consists of those states s € S such that s = s; for
& An edge (s,5',a, \, 8) represents a transition from state s to state s’ 3 ely many i 2 0.
& on input symbol a. The set A\ C X gives the clocks to be reset with &
3 this transition, and 4 is a clock constraint over X. 3 _ . .
E 5 . H Definition. A run r = (,7) of a TBA over timed word (o, 7) is called
. e F C Sisaset of accepting states. v (an) accepting (run) if and only if inf(r) N F # 0.

1337 0 14737

Example: (Accepting) Runs

0,70) 5 (31,1) 2 (82, 10) =25 .. | and (si—1,8:,0%, i, ;) € B, s.t.
- =)

i1+ (ri=7i-1)) | 804 = (Wi-1+(7i—=7i-1))[\i := 0]. Accepting iff inf (r)NF # 0.

Timed word: (a,1), (b,2), (a,3), (b,4), (a,5), (b.6),. ..

« Can we construct any run? Is it accepting?
o> = An:ovll%o (83,105 o

o Can we construct a non-run?

« Can we construct a (non-)accepting run?

a
) BT 0 s

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

16/37

19737

The Language of a TBA >

Definition. Fora TBA A, the Iafguggé L(A) of timed words it accepts
is defined to be the set

{(0,7) | A has an accepting run over (o, 7)}.
—
For short: L(A) is the language of A.

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.

2014-07

The Universality Problem

o Given: A TBA A over alphabet X.
© Question: Does A accept all timed words over 37
In other words: Is L(A) = {(0,7) | 0 € £¥, 7 time sequence}.

Dfued ok 0
o

173

Example: Language of a TBA

7 L(A) = {(0,7) | A has an accepting run over (c,7)}. 7

! _
b « (D)
@ =0)

Claim:

L(A) = Lert (= {((ab)®,7) [3i Vj > i : (12 < Tojo1 +2)})

Question: Is L., timed regular or not?

1837

The Universality Problem

o Given: A TBA A over alphabet X.
* Question: Does A accept all timed words over %7
In other words: Is L(A) = {(o,7) | o € £¥, 7 time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet ¥ accepts all timed words over 3 is II}-hard.

(“The class TT} consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Biichi Automata (untimed), this is different:
e Let Bbea
 Bis universal if and only if L(B) = 0.

o B' such that L(B') = L(B) is effectively computable.

ichi Automaton over X.

© o Language emptyness is decidable for Biichi Automata. o

Yo~ vecas”
Proof Idea: ¢asp,

A

o Then A is universal if and only if Lyqec is empty. ..

... which is the case if and only if M doesn’t have a recurring computation.

Step 1: The Language of Recurring Computations

Let Lypgec be the set of the timed words (o, 7) with b

o o is of the form by, a{* a3 b,af?ad? ... 4,

o (i1, c1,dv), (iz,c2,da), ... is a recurring computation of M. “
L

e Forall j € Ng,

o the time of b;, is j.

o if i = ¢
for every a; at time ¢ in the interval [j, j + 1]
there is an a at time ¢+ 1, b
oifein=ci+1: a
for every a; at time ¢ in the interval [j + 1,5 + 2],
except for the last one, there is an a; at time ¢ — 1,

eifei=c¢—1:
for every a; at time ¢ in the interval [4,j + 1],
except for the last one, there is an a; at time ¢ + 1,

2014-07-20

= And analogously for the as’s.

2137

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

e has two counters C, D and

« a finite program consisting of n instructions.

o An instruction increments or decrements one of the counters, or jumps,
here even non-determ cally.

o A configuration of M is a triple (i, c,d):
values ¢,d € Ny of C' and D.

program counter i € {1

« A computation of M is an infinite consecutive sequence
(1,0,0) = {io, co, do), (i1, c1, d1), (ia, ez, da), ...
that is, (ij41,¢j41,dj11) is a result executing instruction i; at (ij,c;, d;).

A computation of M is called recurring iff i; = 1 for infinitely many j € INo.

2231

Step 2: Construct “Observer” for L, g

Wanted: A TBA A such that L(A) = Lyndec,
i.e., A accepts a timed word (o, 7) if and only if (0, 7) ¢ Lundec-

Approach: What are the reasons for a timed word not to be in Lyndec?

Recall: (0,7) is in Lyygec if and only i

. 0= buaialibyafa

o (i1, dy), (i, 2, da),
a recurring computation of Al

o the time of b;; is j,

= (ol =g 1)

ng, or there is a spurious b; at time ¢ €]j,j + 1[.

(i) The b; at time j € N is m
(i) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0,0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j, j + 1[.

16 - 2014-07-29 ~ Suniv

25/37

Step 1: The Language of Recurring Computations

o Let M be a 2CM with n instructions.

Wanted: A timed language L4 (over some alphabet) representing exactly
the recurring computations of M.
(In particular s.t. Lyyqec = 0 if and only if M has no recurring computation.)

e Choose ¥ = {by....,by,a1,az} as alphabet.

o We represent a configuration (i, c, d) of M by the sequence

biay...a nm...nNHF:?m

d times

233
Step 2: Construct “Observer” for L, qec
Wanted: A TBA A such that L(A) = Lundec,
i.e., A accepts a timed word (o, 7) if and only if (0,7) & Lyndec-
Approach: What are the reasons for a timed word not to be in Lypdec?
(i) The b; at time j € IN is missing, or there is a spurious b; at time ¢ €], j + 1[.
(ii) The prefix of the timed word with times 0 < t < 1 doesn't encode (1,0,0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;
(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1[
Plan: Construct a TBA Ay for case (i), a TBA Ay for case (i), a TBA
Apecur for case (i), and one TBA A; for each instruction for case (iv).
Then set
A=Ay UAinit Udreer U | Ai
1<i<n
25

Step 2.(i): Construct Ay

7 (i) The b; at time j € IN is missing, or there is a spurious b; at time ¢ €], j+1[.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(iv): Construct A;

(iv) The configuration encoded in [j + 1, + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1[.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A7 is A} U~ U AS.

ith by at time j but neither by nor by at time j + 1

o A} accepts words
“Easy to construct.”

o AZis

= o A? accepts words which encode unexpected increment of counter C'.

s .M

., A% accept words with missing decrement of D. 2

Step 2.(ii): Construct A;,;

7 (i)) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0,0).

» It accepts

{(0j.7j)jeng | (00 # b1) V (10 #0) V (1 # 1)}

Aha, And...?

0 30737

Step 2.(iii): Construct A, e,

7 (iii) The timed word is not recurring, i.e. it has only finitely many b;.

o Apecur accepts words with only finitely many b;.

2837

Consequences: Language Inclusion

o Given: Two TBAs A; and A; over alphabet B.
o Question: Is £(A;) C L(A2)?

Possible applications of a decision procedure:

o Characterise the allowed behaviour as A3 and model the design as A;.

o Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

inclusion was decidable, then we could use it to decide
ersality of A by checking

L(Auniv) € L(A)

ersal TBA (which is easy to construct).

Consequences: Complementation

o Given: A timed regular language W over B
(that is, there is a TBA A such that £(A) = W).
o Question: Is T timed regular?

Possible applications of a decision procedure:
o Characterise the allowed behaviour as A and model the design as A;.

o Automatically construct A3 with L(A3) = L(A2) and check
L(A1) N L(A3) = 0,

that is, whether the design has any non-allowed behaviour.
-+ Taking for granted that:

> o The intersection automaton is effectively computable.

« The emptyness problem for Biichi automata is decidable.

& (Proof by construction of region automaton [Alur and Dill, 1994].)
i 3237
Beyond Timed Regular
With clock constraints of the form
r+y<a+y
we can describe timed languages which are not timed regular.
In other words:
o There are strictly more timed languages than timed regular languages.
o There exists timed languages L such that there exists no A with L(A) = L.
Xi=
Example: ° A%
2
g b
2
2 |, 3

2z =3y

2014-07-20

2 {((abe)*,7) |V j.(73j — 73j-1) = 2(73j-1 — T3;-2)} 5

Consequences: Complementation

o Given: A timed regular language W over B
(that is, there is a TBA A such that £(A) = W).
o Question: Is T timed regular?

o If the class of timed regular languages were closed under
[: a “the ¢ | of the inclusion problem is recursively
enumerable. This contradicts the IT}-hardness of the inclusion
problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

a a a
-@ a mw a @
r:=0 r=1

L(A) = {(a*, (ti)iew,) | Ji € Nog 3j >i: (t; =t; + 1)}

Complement language:

L(A) = {(a®, (t:)ien,) | no two a are separated by distance 1}. 3337

hat is a PLC?

30

Beyond Timed Regular

3437

hat’s special about PLC?

* microprocessor, memory,
timers

igital (or analog) 1/0 ports

possibly RS 232,
fieldbuses, networking

robust hardware

« reprogrammable

standardised programming
model (IEC 61131-3)

here are PLC employed?

+ mostly process
automatisation
» production lines
» packaging lines
» chemical plants
» power plants

« electric motors,
pneumatic or hydraul
cylinders

not so much: product

automatisation, there

+ tailored or OTS
controller boards

+ embedded controllers

References

650

36/37

o are PLC programmed?

16

[Alur and Dill, 1994] Alur, R. and Dill

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks,

» PLC have in common that they operate in a cyclic manner:

read inputs

compute

write outputs

» Cyclic operation is repeated until external interruption
(such as shutdown or reset).

« Cycle time: typically a few milliseconds. [?]

» Programming for PLC means pro: g the “compute” part.

o Input/output values are available via designated local variables.

D. L. (1994). A theory of timed
automata. Theoretical Computer Science, 126(2):183-235.

Systems - Formal Specification and Automatic Verification. Cambridge
University Press.

H. (2008). Real-Time

373

hy study PLC?

« Note:
the discussion here is not limited to PLC and IEC 61131-3 languages.

g system with at least one

Any programming language on an opera
real-time clock will do.
(Where a real-time clock is a piece of hardware such that,
« we can program it to wait for ¢ time units,
« we can query whether the set time has elapsed,
« if we program it to wait for ¢ time units,
it does so with negligible deviation.)

And strictly speaking, we don't even need “full blown" operating systems

« PLC are just a formalisation on a good level of abstraction:
o there are inputs somehow available as local variables,
bles,
» somehow, inputs are polled and outputs updated atomically,

o there are outputs somehow available as local va

o there is some interface to a real-time clock.

1250

