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Last Lecture:

e Semantical Correctness Proof

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.

o Facts: (un)decidability properties of DC in discrete/continuous time.
o What's the idea of the considered (un)decidability proofs?

e Content:

e RDC in discrete time
e Satisfiability and realisability from 0 is decidable for RDC in discrete time

e Undecidable problems of DC in continuous time
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RDC in Discrete Time Cont’d
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Restricted DC (RDC)

— 8 — 2014-06-05 — Sdisc —

F .= [P_‘ ‘—IFl‘Fl\/FglFl;FQ

where P is a state assertion, but with boolean observables only.

Note:

e No global variables, thus don't need V.
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Discrete Time Interpretations
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e An interpretation 7 is called discrete time interpretation if and only if,
for each state variable X,

Xz :Time - D(X)

with
e Time = RSL,

e all discontinuities are in INy.
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Discrete Time Interpretations
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e An interpretation 7 is called discrete time interpretation if and only if,
for each state variable X,

Xz :Time - D(X)

with
e Time = RSL,

e all discontinuities are in INy.

e An interval [b,e] C Intv is called discrete if and only if b,e € IN,.
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Discrete Time Interpretations
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e An interpretation 7 is called discrete time interpretation if and only if,
for each state variable X,

Xz :Time - D(X)

with
e Time = RS_,

e all discontinuities are in INy.

e An interval [b,e] C Intv is called discrete if and only if b,e € IN,.

o We say (for a discrete time interpretation Z and a discrete interval [b, e])
I,[b,@] ‘:FI;FQ
if and only if there exists m € [b, e] N INg such that

Z,[b,m] E F1 and Z,[m,e] = F>
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Differences between Continuous and Discrete Time
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e Let P be a state assertion.

Continuous Time

Discrete Time

=" ([P]:[P])
= [P]

=1 [P] =
(TP1:[P))
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Differences between Continuous and Discrete Time
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e Let P be a state assertion.

Continuous Time

Discrete Time

=" ([P]:[P])
= [P]

=1 [P] =
(TP1:[P))

o In particular: £ =1 < ([1| A=([1];]1])) (in discrete time).
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Expressiveness of RDC
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o /=1
o /=0

[T AT 5 1))

o t{rue

o [P=0

o [P=1

e [P=k+1
o [P>Ek

o [P>k

o [Pk

o [P<k

rrrrirtrrree

where k£ € IN.
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Decidability of Satisfiability/Realisability from 0
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Theorem 3.6.
The satisfiability problem for RDC with discrete time is decidable.

Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.
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Sketch: Proof of Theorem 3.6
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e give a procedure to construct, given a formula F', a regular language L(F)
such that
Z,[0,n] = F if and only if w € L(F)

where word w describes Z on |0, n|
(suitability of the procedure: Lemma 3.4)

o then F'is satisfiable in discrete time if and only if L(F') is not empty
(Lemma 3.5)

e Theorem 3.6 follows because

o L(F) can effectively be constructed,

e the emptyness problem is decidable for regular languages.
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Construction of L(F)
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e ldea:

e alphabet ¥ (F’) consists of basic conjuncts of the state variables in F,
e a letter corresponds to an interpretation on an interval of length 1,

e a word of length n describes an interpretation on interval [0, n].
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Construction of L(F)
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e ldea:

e alphabet X (F') consists of basic conjuncts of the state variables in F,
e a letter corresponds to an interpretation on an interval of length 1,

o a word of length n describes an interpretation on interval [0, n].

o Example: Assume F' contains exactly state variables X, Y, Z, then

Y(F)={XANYANZXANYAN-ZXANYNZXNY AN=Z,
“XANYNZ-XANYN-Z-XANYNZ-XANYN-Z}.

XI(l) w=(~X A=Y A-Z)
1 (X A=Y AN-Z)
Yz
(1’ (X AY AN-Z)
41, : (XAY ANZ)€eX(F)
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Construction of L(F) more Formally
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\

Definition 3.2. A word w = ay...a, € X(F)* with n > 0 de-
scribes a discrete interpretation Z on [0, n] if and only if

Vjie{l,...,n}Vtelj— 1,4 I[a;](t) = L.

For n = 0 we put w = «.

J

&

e Each state assertion P can be transformed into an equivalent disjunctive

normal form \/!" | a; with a; € X(F).
o Set DNF(P) :={a1,...,an} (C X(F)).
o Define L(F) inductively:

11/36



Lemma 3.4
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Lemma 3.4. For all RDC formulae F', discrete interpretations Z,
n > 0, and all words w € ¥(F)* which describe Z on [0, n],

Z,[0,n] = F if and only if w € L(F).
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Sketch: Proof of Theorem 3.9
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Theorem 3.9.
The realisability problem for RDC with discrete time is decidable.

kern(L) contains all words of L whose prefixes are again in L.
If L is regular, then kern(L) is also regular.

kern(L(F')) can effectively be constructed.

We have
Lemma 3.8. For all RDC formulae F', F' is realisable from 0 in
discrete time if and only if kern(L(F')) is infinite.

Infinity of regular languages is decidable.
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(Variants of) RDC in Continuous Time
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Recall: Restricted DC (RDC)
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F .= [P_‘ ‘—IFl‘Fl\/FglFl;FQ

where P is a state assertion, but with boolean observables only.

From now on: “RDC + ¢ =2, V2"

F = [P_|’—lFl|F1\/F2’Fl;F2|€=1’€=ZU’VCEOF1
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Undecidability of Satisfiability/Realisability from 0
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Theorem 3.10.
The realisability from 0 problem for DC with continuous time is
undecidable, not even semi-decidable.

Theorem 3.11.
The satisfiability problem for DC with continuous time is undecid-
able.
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Sketch: Proof of Theorem 3.10

Reduce divergence of two-counter machines to realisability from O:

o Given a two-counter machine M with final state gg,,

e construct a DC formula F(M) := encoding(M)
e such that

M diverges if and only if the DC formula
F(M) A [Qﬁn_l

is realisable from 0.

o If realisability from 0 was (semi-)decidable,
divergence of two-counter machines would be (which it isn't).

— 8 — 2014-06-05 — Scont —
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Recall: Two-counter machines
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A two-counter machine is a structure

M = (Q7 quQﬁﬂnPTOg)

where

e O is a finite set of states,
o comprising the initial state go and the final state gg,

e Prog is the machine program, i.e. a finite set of commands of the form

/

q:inc;:q¢ and q:dec;:q,q", i€ {1,2}.

e We assume deterministic 2CM: for each ¢ € O, at most one command
starts in ¢, and gg, Is the only state where no command starts.
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2CM Configurations and Computations
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e a configuration of M is a triple K = (¢,n1,n2) € Q@ x Ng x INg.
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2CM Configurations and Computations
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o a configuration of M is a triple K = (¢,n1,n2) € Q x INg x INp.

e The transition relation “F" on configurations is defined as follows:

Command Semantics: K + K’
q - ’1:7’LC1 : q, (Q7n17n2) = (q,7n1 + 17”2)
q: d@Cl : qlaq// (Q707n2) - (q,707n2)
(q,n1 + 1,n2) F (¢, n1,n9)
q: ian : q, (q7n17n2) - (q,7n17n2 + 1)
q - deCQ : quq// <Q7n170) = (qlvnlvo)
(Q7n17n2 + 1) = (q,,7n17n2)
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2CM Configurations and Computations
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o a configuration of M is a triple K = (¢,n1,n2) € Q x INg x INp.

e The transition relation “F" on configurations is defined as follows:

Command Semantics: K F K’

q: ’1:7’LC1 . q, (Q7n17n2) = (q,7n1 + 17”2)

q: d@Cl : qlaq// (Q707n2) I_ (qlaoanQ)
(g,n1 + 1,n2) F (¢”,n1,no)

q - ian : q, (Q7n17n2) I_ (q,7n17n2 + 1)

q: d602 . quq// <Q7n170) = (qlvnlvo)
(Q7n17n2 + 1) l_ (q,,7n17n2)

e The (!) computation of M is a finite sequence of the form (“M halts”)

Ko =(q,0,0) F K1 - Ko -+ F (qﬁn,nl,ng)
or an infinite sequence of the form (“M diverges”)

K():(Q(),0,0)l_Kll_Kgl_...
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2CM Example
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M = (Q7 QO7Qﬁn7PT09>

commands of the form ¢ : inc; : ¢’ and q : dec; : ¢/, q", i € {1,2}

configuration K =

(Q7n17n2) S Q X INO X ]N().

Command Semantics: K + K’
q:inci:q (g,m1,n2) E (¢',n1 + 1,n9)
q:deci:q,q" (¢,0,m2) = (¢',0,n2)

(g:m1 +1,n9) = (¢",n1,n2)
q:incy:q (q,n1,m2) F (¢',n1,n9 + 1)
q:decy:q,q" (¢,m1,0) F (¢, n1,0)

(g,n1,m2+ 1) F (¢",n1,n2)
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Reducing Divergence to DC realisability: Idea In
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Pictures
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Reducing Divergence to DC realisability: Idea
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e A single configuration K of M can be encoded in an interval of length 4;
being an encoding interval can be characterised by a DC formula.

e An interpretation on ‘Time’ encodes the computation of M if

e each interval [4n,4(n + 1)], n € INp, encodes a configuration K,

e each two subsequent intervals [4n,4(n 4+ 1)] and [4(n + 1),4(n + 2)],
n € INg, encode configurations K, - K,,11 in transition relation.

o Being encoding of the run can be characterised by DC formula F'(M).

o Then M diverges if and only if F(M) A =0l qg,] is realisable from 0.
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Encoding Configurations

(

— 8 — 2014-06-05 — Scont —

e We use Obs = {obs} with
D(obs) = QU {C1,C5, B, X }.

Examples:

o K=1(q,2,3)

[q] [B]; [Ci]; [B];[Ci]:[B] | X | [B]; [C2] ;5 [B];
A ; A ; N ;
/=1 /=1 /=1

* KO — (QO,O)O)
( [q0] ) ( [B] ) ( [X] ) ( [B] )
A ; A ; A ; A
(=1 (=1 (=1 ¢ =1

or, using abbreviations, [go]"; [B]"; [X]'; [B]"

[Co]5 [B]; [Ca] 5 [B]
A\
(=1
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Construction of F(M)
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In the following, we give DC formulae describing

e the initial configuration,
o the general form of configurations,
e the transitions between configurations,

e the handling of the final state.

F (M) is the conjunction of all these formulae.
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Initial and General Configurations
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init = (£ >4 = [qo]*; [B]'; [X]'; [B]'; true)

keep <= O([Q1'; [BVCi' ;[ X ;[ BV Colt ;0 =4
= (=4;[Q]"; [BVCi]; [X]' 5 [BVCalY)
where @ := (X V1V Cs V B).
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Auxiliary Formula Pattern copy

copy(E, {Py,...,P,}) <=
Ve, de ((FEANL=c); ([PLV VP |ANlL=d);|[P]|;¢{=14
— l(=c+d+4;|P]

Qc.,doD((F/\Ezc);([Pl\/---\/PqJ/\Ezd);(Pn];ﬁzél
— (=c+d+4;|P,]
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q :incy : q (Increment)
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(i) Change state

O([q]*; [BvCi]Y ;[ XY [BYCellit=4 = 0=4;[¢7; true)

(i) Increment counter

vdeO([q]'; [B1¢; (¢ =0V [Ci];[-X]);[X]';[BVCyt;e=4
— (=4;[¢1; ([B];[C1]; [BIAL=d); true
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q :incy : q (Increment)

— 8 — 2014-06-05 — Scont —

(i) Keep rest of first counter

copy([q]'; [BV C1]: [C1],{B,C1})

(i) Leave second counter unchanged

copy([q]'; [BV C1]: [X1'{B,C2})
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q: deci:q,q" (Decrement)
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(i) If zero

(g1 [BI 5 [XTH 5 [BV Calt i€ =4 = £=4;[q1" i [B]"; true)

(i) Decrement counter

Vde Od([q]*; ([B];[CiIAL=4d);[B];[BVCi];[X]';[BVCy]';t=
— (=4;[¢"; [B]%; true)

(iii) Keep rest of first counter

copy([q]"; [B]; [C1]: [B1],{B,C1})
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Final State
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COpy(Mﬁnwl ’ [B \/Cl—‘l ’ [XW ’ [B \/Cﬂl?{qﬁmBVX? 01702})
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Satisfiability

e Following [Chaochen and Hansen, 2004] we can observe that
M halts if and only if the DC formula F(M) A O[qgan] is satisfiable.

This yields

Theorem 3.11. The satisfiability problem for DC with continuous
time is undecidable.

(It is semi-decidable.)

e Furthermore, by taking the contraposition, we see

M diverges if and only if M does not halt
if and only if F(M) A =0[gan] is not satisfiable.

e Thus whether a DC formula is not satisfiable is not decidable,
not even semi-decidable. 32/36
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Validity
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e By Remark 2.13, F' is valid iff =F" is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
Is undecidable, not even semi-decidable.
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Validity

— 8 — 2014-06-05 — Scont —

e By Remark 2.13, F' is valid iff =F" is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
Is undecidable, not even semi-decidable.

o This provides us with an alternative proof of Theorem 2.23 ( “there is no
sound and complete proof system for DC"):
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Validity
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e By Remark 2.13, F' is valid iff =F" is not satisfiable, so

Corollary 3.12. The validity problem for DC with continuous time
Is undecidable, not even semi-decidable.

o This provides us with an alternative proof of Theorem 2.23 (“there is no
sound and complete proof system for DC"):

e Suppose there were such a calculus C.

e By Lemma 2.22 it is semi-decidable
whether a given DC formula F' is a theorem in C.

e By the soundness and completeness of C,
F'is a theorem in C if and only if F' is valid.

e Thus it is semi-decidable whether F' is valid.

33/36



Discussion

e Note: the DC fragment defined by the following grammar is sufficient for
the reduction

F = [P_||—lF1|F1\/F2|F1;F2|€:1|€:ZC|VZCOF1,

P a state assertion, x a global variable.

e Formulae used in the reduction are abbreviations:

=4 <— V(=1;/=1;/=1;/=1
0 >4 <— { =4; true
l=x+4+y+4 < l=x;l=y;{=14

e Length 1 is not necessary — we can use ¢ = z instead, with fresh z.

e This is RDC augmented by “/ = 2" and "V,
which we denote by RDC + 7/ = x,Vx.

— 8 — 2014-06-05 — Scont —
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