
–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
p
re
li
m

–

2/37

Last Lecture:

• Extended Timed Automata Cont’d

• A Fragment of TCTL

• Testable DC Formulae

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Are all DC formulae testable?

• What’s a TBA and what’s the difference to (extended) TA?

• What’s undecidable for timed (Büchi) automata? Idea of the proof?

• Content:

• An untestable DC formula.

• Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].

• The Universality Problem is undecidable for TBA [Alur and Dill, 1994]

• Why this is unfortunate.

• Timed regular languages are not everything.

Untestable DC Formulae

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

3/37

Recall: Testability

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
d
ct
es
t
–

4/37

Definition 6.1. A DC formula F is called testable if an observer
(or test automaton (or monitor)) AF exists such that for all net-
works N = C(A1, . . . ,An) it holds that

N |= F iff C(A′
1, . . . ,A

′
n,AF) |= ∀�¬(AF .qbad)

Otherwise it’s called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

Untestable DC Formulae

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
d
ct
es
t
–

5/37

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

“Whenever we observe a change from A to ¬A at time tA,
the system has to produce a change from B to ¬B at some time tB ∈ [tA, tA + 1]

and a change from C to ¬C at time tB + 1.

Sketch of Proof: Assume there is AF such that, for all networks N , we have

N |= F iff C(A′
1, . . . ,A

′
n,AF) |= ∀�¬(AF .qbad)

Assume the number of clocks in AF is n ∈ N0.

Untestable DC Formulae Cont’d

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
d
ct
es
t
–

6/37

Consider the following time points:

• tA := 1

• tiB := tA + 2i−1
2(n+1) for i = 1, . . . , n+ 1

• tiC ∈
]
tiB + 1− 1

4(n+1) , t
i
B + 1 + 1

4(n+1)

[
for i = 1, . . . , n+ 1

with tiC − tiB 6= 1 for 1 ≤ i ≤ n+ 1.

Example: n = 3

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

Untestable DC Formulae Cont’d

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
d
ct
es
t
–

7/37

Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• The shown interpretation I satisfies assumption of property.

• It has n+ 1 candidates to satisfy commitment.

• By choice of tiC , the commitment is not satisfied; so F not satisfied.

• Because AF is a test automaton for F , is has a computation path to qbad.

• Because n = 3, AF can not save all n+ 1 time points tiB .

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is not
in 2− ti0B + (− 1

4(n+1) ,
1

4(n+1))

Untestable DC Formulae Cont’d

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
d
ct
es
t
–

8/37

Example: n = 3

A ¬A

B ¬B

C ¬C

[0, 1]

1

A

B

C

Time

1

0
AI

1

0
BI

1

0
CI

0 1 2 3t1B t2B t3B t4B t1C t2C t3C t4C

• Because AF is a test automaton for F , is has a computation path to qbad.

• Thus there is 1 ≤ i0 ≤ n such that all clocks of AF have a valuation which is not
in 2− ti0B + (− 1

4(n+1) ,
1

4(n+1))

• Modify the computation to I ′ such that ti0C := ti0B + 1.

• Then I ′ |= F , but AF reaches qbad via the same path.

• That is: AF claims I ′ 6|= F .

• Thus AF is not a test automaton. Contradiction.

Timed Büchi Automata

[Alur and Dill, 1994]

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

9/37

. . . vs. Timed Automata

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

10/37

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

ξ = 〈off, 0〉, 0
1
−→ 〈off, 1〉, 1

press?
−−−−→ 〈light, 0〉, 1

3
−→ 〈light, 3〉, 4

press?
−−−−→ 〈bright, 3〉, 4

..
−→ . . .

ξ is a computation path and run of A.

s0 s2

s1 s3

b a

a
x := 0

b, x < 2a, x := 0

New: Given a timed word

(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), . . . ,

does A accept it?

New: acceptance criterion is

visiting accepting state infinitely often.

Timed Languages

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

11/37

Definition. A time sequence τ = τ1, τ2, . . . is an infinite sequence of
time values τi ∈ R+

0 , satisfying the following constraints:

(i) Monotonicity:
τ increases strictly monotonically, i.e. τi < τi+1 for all i ≥ 1.

(ii) Progress: For every t ∈ R+
0 , there is some i ≥ 1 such that τi > t.

Definition. A timed word over an alphabet Σ is a pair (σ, τ) where

• σ = σ1, σ2, · · · ∈ Σω is an infinite word over Σ, and

• τ is a time sequence.

Definition. A timed language over an alphabet Σ is a set of timed
words over Σ.

Example: Timed Language

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

12/37

Timed word over alphabet Σ: a pair (σ, τ) where

• σ = σ1, σ2, . . . is an infinite word over Σ, and
• τ is a time sequence (strictly (!) monotonic, non-Zeno).

Lcrt = {((ab)ω, τ) | ∃ i ∀ j ≥ i : (τ2j < τ2j−1 + 2)}

Timed Büchi Automata

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

13/37

Definition. The set Φ(X) of clock constraints over X is defined
inductively by

δ ::= x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2

where x ∈ X and c ∈ Q is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple
(Σ, S, S0, X,E, F), where

• Σ is an alphabet,

• S is a finite set of states, S0 ⊆ S is a set of start states,

• X is a finite set of clocks, and

• E ⊆ S × S × Σ× 2X × Φ(X) gives the set of transitions.

An edge (s, s′, a, λ, δ) represents a transition from state s to state s′

on input symbol a. The set λ ⊆ X gives the clocks to be reset with
this transition, and δ is a clock constraint over X.

• F ⊆ S is a set of accepting states.

Example: TBA

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

14/37

A = (Σ, S, S0, X,E, F)
(s, s′, a, λ, δ) ∈ E

s1 s0 s2 s3
b

a

a
x := 0

b, x < 2

a, x := 0

(Accepting) TBA Runs

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

15/37

Definition. A run r, denoted by (s̄, ν̄), of a TBA (Σ, S, S0, X,E, F)
over a timed word (σ, τ) is an infinite sequence of the form

r : 〈s0, ν0〉
σ1−→
τ1

〈s1, ν1〉
σ2−→
τ2

〈s2, ν2〉
σ3−→
τ3

. . .

with si ∈ S and νi : X → R+
0 , satisfying the following requirements:

• Initiation: s0 ∈ S0 and ν(x) = 0 for all x ∈ X.

• Consecution: for all i ≥ 1, there is an edge in E of the form
(si−1, si, σi, λi, δi) such that

• (νi−1 + (τi − τi−1)) satisfies δi and

• νi = (νi−1 + (τi − τi−1))[λi := 0].

The set inf (r) ⊆ S consists of those states s ∈ S such that s = si for
infinitely many i ≥ 0.

Definition. A run r = (s̄, ν̄) of a TBA over timed word (σ, τ) is called
(an) accepting (run) if and only if inf (r) ∩ F 6= ∅.

Example: (Accepting) Runs

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

16/37

r : 〈s0, ν0〉
σ1−→
τ1

〈s1, ν1〉
σ2−→
τ2

〈s2, ν2〉
σ3−→
τ3

. . . initial and (si−1, si, σi, λi, δi) ∈ E, s.t.

(νi−1+(τi−τi−1)) |= δi, νi = (νi−1+(τi−τi−1))[λi := 0]. Accepting iff inf (r)∩F 6= ∅.

s1 s0 s2 s3
b

a

a
x := 0

b, x < 2

a, x := 0

Timed word: (a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), . . .

• Can we construct any run? Is it accepting?

• Can we construct a non-run?

• Can we construct a (non-)accepting run?

The Language of a TBA

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

17/37

Definition. For a TBA A, the language L(A) of timed words it accepts
is defined to be the set

{(σ, τ) | A has an accepting run over (σ, τ)}.

For short: L(A) is the language of A.

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.

Example: Language of a TBA

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
tb
a
–

18/37

L(A) = {(σ, τ) | A has an accepting run over (σ, τ)}.

s1 s0 s2 s3
b

a

a
x := 0

b, x < 2

a, x := 0

Claim:

L(A) = Lcrt (= {((ab)ω, τ) | ∃ i ∀ j ≥ i : (τ2j < τ2j−1 + 2)})

Question: Is Lcrt timed regular or not?

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

19/37

The Universality Problem

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

20/37

• Given: A TBA A over alphabet Σ.

• Question: Does A accept all timed words over Σ?

In other words: Is L(A) = {(σ, τ) | σ ∈ Σω, τ time sequence}.

The Universality Problem

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

20/37

• Given: A TBA A over alphabet Σ.

• Question: Does A accept all timed words over Σ?

In other words: Is L(A) = {(σ, τ) | σ ∈ Σω, τ time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet Σ accepts all timed words over Σ is Π1

1-hard.

(“The class Π1

1 consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

• Let B be a Büchi Automaton over Σ.

• B is universal if and only if L(B) = ∅.

• B′ such that L(B′) = L(B) is effectively computable.

• Language emptyness is decidable for Büchi Automata.

Proof Idea

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

21/37

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet Σ accepts all timed words over Σ is Π1

1-hard.

Proof Idea:

• Consider a language Lundec

which consists of the recurring computations of a 2-counter machine M .

• Construct a TBA A from M which accepts the complement of Lundec, i.e. with

L(A) = Lundec .

• Then A is universal if and only if Lundec is empty. . .

. . . which is the case if and only if M doesn’t have a recurring computation.

Once Again: 2-Counter Mach. (Different Flavour)

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

22/37

A two-counter machine M

• has two counters C, D and

• a finite program consisting of n instructions.

• An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.

• A configuration of M is a triple 〈i, c, d〉:

program counter i ∈ {1, . . . , n}, values c, d ∈ N0 of C and D.

• A computation of M is an infinite consecutive sequence

〈1, 0, 0〉 = 〈i0, c0, d0〉, 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . .

that is, 〈ij+1, cj+1, dj+1〉 is a result executing instruction ij at 〈ij, cj , dj〉.

A computation of M is called recurring iff ij = 1 for infinitely many j ∈ N0.

Step 1: The Language of Recurring Computations

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

23/37

• Let M be a 2CM with n instructions.

Wanted: A timed language Lundec (over some alphabet) representing exactly
the recurring computations of M .
(In particular s.t. Lundec = ∅ if and only if M has no recurring computation.)

• Choose Σ = {b1, . . . , bn, a1, a2} as alphabet.

• We represent a configuration 〈i, c, d〉 of M by the sequence

bi a1 . . . a1
︸ ︷︷ ︸

c times

a2 . . . a2
︸ ︷︷ ︸

d times

= b1a
c
1a

d
2

Step 1: The Language of Recurring Computations

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

24/37

Let Lundec be the set of the timed words (σ, τ) with

• σ is of the form bi1a
c1
1 ad1

2 bi2a
c2
1 ad2

2 . . .

• 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . . is a recurring computation of M .

• For all j ∈ N0,

• the time of bij is j.

• if cj+1 = cj :
for every a1 at time t in the interval [j, j + 1]
there is an a1 at time t+ 1,

• if cj+1 = cj + 1:
for every a1 at time t in the interval [j + 1, j + 2],
except for the last one, there is an a1 at time t− 1,

• if cj+1 = cj − 1:
for every a1 at time t in the interval [j, j + 1],
except for the last one, there is an a1 at time t+ 1,

And analogously for the a2’s.

Step 2: Construct “Observer” for Lundec

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

25/37

Wanted: A TBA A such that L(A) = Lundec,
i.e., A accepts a timed word (σ, τ) if and only if (σ, τ) /∈ Lundec.

Approach: What are the reasons for a timed word not to be in Lundec?

Recall: (σ, τ) is in Lundec if and only if:

• σ = bi1a
c1
1 ad1

2 bi2a
c2
1 ad2

2

• 〈i1, c1, d1〉, 〈i2, c2, d2〉, . . .
is a recurring computation of M .

• the time of bij is j,

• if cj+1 = cj (= cj + 1, = cj − 1): . . .

(i) The bi at time j ∈ N is missing, or there is a spurious bi at time t ∈]j, j + 1[.

(ii) The prefix of the timed word with times 0 ≤ t < 1 doesn’t encode 〈1, 0, 0〉.

(iii) The timed word is not recurring, i.e. it has only finitely many bi.

(iv) The configuration encoded in [j + 1, j + 2[doesn’t faithfully represent the
effect of instruction bi on the configuration encoded in [j, j + 1[.

Step 2: Construct “Observer” for Lundec

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

25/37

Wanted: A TBA A such that L(A) = Lundec,
i.e., A accepts a timed word (σ, τ) if and only if (σ, τ) /∈ Lundec.

Approach: What are the reasons for a timed word not to be in Lundec?

(i) The bi at time j ∈ N is missing, or there is a spurious bi at time t ∈]j, j + 1[.

(ii) The prefix of the timed word with times 0 ≤ t < 1 doesn’t encode 〈1, 0, 0〉.

(iii) The timed word is not recurring, i.e. it has only finitely many bi.

(iv) The configuration encoded in [j + 1, j + 2[doesn’t faithfully represent the
effect of instruction bi on the configuration encoded in [j, j + 1[.

Plan: Construct a TBA A0 for case (i), a TBA Ainit for case (ii), a TBA
Arecur for case (iii), and one TBA Ai for each instruction for case (iv).

Then set
A = A0 ∪ Ainit ∪ Arecur ∪

⋃

1≤i≤n

Ai

Step 2.(i): Construct A0

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

26/37

(i) The bi at time j ∈ N is missing, or there is a spurious bi at time t ∈]j, j+1[.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(ii): Construct Ainit

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

27/37

(ii) The prefix of the timed word with times 0 ≤ t < 1 doesn’t encode 〈1, 0, 0〉.

• It accepts

{(σj , τj)j∈N0
| (σ0 6= b1) ∨ (τ0 6= 0) ∨ (τ1 6= 1)}.

Step 2.(iii): Construct Arecur

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

28/37

(iii) The timed word is not recurring, i.e. it has only finitely many bi.

• Arecur accepts words with only finitely many bi.

Step 2.(iv): Construct Ai

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
u
n
iv

–

29/37

(iv) The configuration encoded in [j +1, j +2[doesn’t faithfully represent the
effect of instruction bi on the configuration encoded in [j, j + 1[.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A7 is A1
7 ∪ · · · ∪ A6

7.

• A1
7 accepts words with b7 at time j but neither b3 nor b5 at time j + 1.

“Easy to construct.”

• A2
7 is

ℓ0 ℓ1 ℓ2

∗

b7
x := 0

∗
a1

x < 1

x := 0

¬a1, x = 1

x 6= 1

• A3
7 accepts words which encode unexpected increment of counter C.

• A4
7, . . . ,A

6
7 accept words with missing decrement of D.

Aha, And...?

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

30/37

Consequences: Language Inclusion

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
ja
u
n
d
–

31/37

• Given: Two TBAs A1 and A2 over alphabet B.

• Question: Is L(A1) ⊆ L(A2)?

Possible applications of a decision procedure:

• Characterise the allowed behaviour as A2 and model the design as A1.

• Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

• If language inclusion was decidable, then we could use it to decide
universality of A by checking

L(Auniv) ⊆ L(A)

where Auniv is any universal TBA (which is easy to construct).

Consequences: Complementation

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
ja
u
n
d
–

32/37

• Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

• Question: Is W timed regular?

Possible applications of a decision procedure:

• Characterise the allowed behaviour as A2 and model the design as A1.

• Automatically construct A3 with L(A3) = L(A2) and check

L(A1) ∩ L(A3) = ∅,

that is, whether the design has any non-allowed behaviour.

• Taking for granted that:

• The intersection automaton is effectively computable.

• The emptyness problem for Büchi automata is decidable.
(Proof by construction of region automaton [Alur and Dill, 1994].)

Consequences: Complementation

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
ja
u
n
d
–

33/37

• Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

• Question: Is W timed regular?

• If the class of timed regular languages were closed under
complementation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the Π1

1-hardness of the inclusion
problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

a

a
x := 0

a

a
x = 1

a

L(A) = {(aω, (ti)i∈N0
) | ∃ i ∈ N0 ∃ j > i : (tj = ti + 1)}

Complement language:

L(A) = {(aω, (ti)i∈N0
) | no two a are separated by distance 1}.

Beyond Timed Regular

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

34/37

Beyond Timed Regular

–
1
6
–
2
0
1
4
-0
7
-2
9
–
S
b
ey
o
n
d
–

35/37

With clock constraints of the form

x+ y ≤ x′ + y′

we can describe timed languages which are not timed regular.

In other words:

• There are strictly more timed languages than timed regular languages.

• There exists timed languages L such that there exists no A with L(A) = L.

Example:

ℓ1

ℓ0 ℓ2

a, x := 0 b, y := 0

c

2x = 3y

{((abc)ω, τ) | ∀ j.(τ3j − τ3j−1) = 2(τ3j−1 − τ3j−2)}

W hat is a PLC?

–
0
9

–
2
0
1
3
-0

5
-2

9
–

m
a
in

–

3/50

W hat’s special about PLC?

• microprocessor, memory,
timers

• digital (or analog) I/O ports

• possibly RS 232,
fieldbuses, networking

• robust hardware

• reprogrammable

• standardised programming

model (IEC 61131-3)

–
0
9

–
2
0
1
3
-0

5
-2

9
–

S
p
lc

–

5/50

W here are PLC employed?

• mostly process

automatisation

• production lines

• packaging lines

• chemical plants

• power plants

• electric motors,
pneumatic or hydraulic
cylinders

• . . .

• not so much: product

automatisation, there

• tailored or OTS
controller boards

• embedded controllers

• . . .

–
0
9

–
2
0
1
3
-0

5
-2

9
–

S
p
lc

–

6/50

H ow are PLC programmed?

• PLC have in common that they operate in a cyclic manner:

•

•

•

read inputs

compute

write outputs

• Cyclic operation is repeated until external interruption
(such as shutdown or reset).

• Cycle time: typically a few milliseconds. [?]

• Programming for PLC means providing the “compute” part.

• Input/output values are available via designated local variables.

–
0
9

–
2
0
1
3
-0

5
-2

9
–

S
p
lc

–

7/50

W hy study PLC?

• Note:

the discussion here is not limited to PLC and IEC 61131-3 languages.

• Any programming language on an operating system with at least one

real-time clock will do.
(Where a real-time clock is a piece of hardware such that,

• we can program it to wait for t time units,

• we can query whether the set time has elapsed,

• if we program it to wait for t time units,
it does so with negligible deviation.)

• And strictly speaking, we don’t even need “full blown” operating systems.

• PLC are just a formalisation on a good level of abstraction:

• there are inputs somehow available as local variables,

• there are outputs somehow available as local variables,

• somehow, inputs are polled and outputs updated atomically,

• there is some interface to a real-time clock.

–
0
9

–
2
0
1
3
-0

5
-2

9
–

S
p
lc

–

12/50

References

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

36/37

–
1
6
–
2
0
1
4
-0
7
-2
9
–
m
a
in

–

37/37

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed
automata. Theoretical Computer Science, 126(2):183–235.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time

Systems - Formal Specification and Automatic Verification. Cambridge
University Press.

