Real-Time Systems

Lecture 16: The Universality Problem for TBA

2014-07-29

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

— 16 — 2014-07-29 — main —

Contents & Goals

Last Lecture:

e Extended Timed Automata Cont'd
e A Fragment of TCTL
e Testable DC Formulae

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.

o Are all DC formulae testable?
e What's a TBA and what's the difference to (extended) TA?
e What's undecidable for timed (Biichi) automata? Idea of the proof?

o Content:

e An untestable DC formula.
Timed Biichi Automata and timed regular languages [Alur and Dill, 1994].
The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
Why this is unfortunate.

— 16 — 2014-07-29 — Sprelim —
[]

Timed regular languages are not everything. 2/37

— 16 — 2014-07-29 — main —

Untestable DC Formulae

Recall: Testability

— 16 — 2014-07-29 — Sdctest —

\

N

Definition 6.1. A DC formula F' is called testable if an observer
(or test automaton (or monitor)) Af exists such that for all net-
works V' = C(Ay,...,A,) it holds that

NEF iff CA,..., A Ar) EVO~(Ar.qpaq)

Otherwise it's called untestable.

Proposition 6.3. There exist untestable DC formulae.

Theorem 6.4. DC implementables are testable.

Untestable DC Formulae

— 16 — 2014-07-29 — Sdctest —

2 €
sswmphann §a P eltytyml
B
Gpombinsnt {C /éc/”’sﬂ

“Whenever we observe a change from A to —A at time ¢4,
the system has to produce a change from B to =B at some time {5 € [ta,ta + 1]
and a change from C to =C at time {5 + 1.

Sketch of Proof: Assume there is A such that, for all networks A/, we have
N }:F iff C(i,,A;L,AF) l:vm_‘(-AF'Qbad)

Assume the number of clocks in Ar is n € INy.

Untestable DC Formulae Cont’d

— 16 — 2014-07-29 — Sdctest —

Consider the following time points:
° tA — 1 :‘:B =:e'

. tiB::tAJr%fri:L.. n+1

cto€lth+l—qmmtht 1+l fori=1,...,n+1
with t&, —th, #1for 1 <i<n+ 1.

Example: n =3

A

e

Bz

=

(=)

Untestable DC Formulae Cont’d *

— 16 — 2014-07-29 — Sdctest —

Example: n =3

[\
- —— o

1 _—
A :
o
gl T T
IO R
1
C
0
0 1ty t
e The shown interpretation Z satisfies assumption of property.
e It has n + 1 candidates to satisfy commitment.
e By choice of t%, the commitment is not satisfied; so F not satisfied.
e Because A is a test automaton for F', is has a computation path to gpaq.
e Because n = 3, Ar can not save all n + 1 time points tiB.

. ! 1 1
in 2 —13 + (~ 1 D)

Untestable DC Formulae Cont’d *

— 16 — 2014-07-29 — Sdctest —

Example: n =3

A

e

Bz

=

(=)

0 1t}

Thus there is 1 < ig < n such that all clocks of Ar have a valuation which is not

A —-A
e e o —]

—————— +————tk———— - ————— o

g |

.

e Because A is a test automaton for F, is has a computation path to gpaq.

e Thus there is 1 <49 < n such that all clocks of Ar have a valuation which is not

. 7 1 1
in 2 —t5 + (~ 1@y)

o Modify the computation to Z' such that ¢9 := '3 4 1.
e Then Z' | F, but A reaches qpqq4 via the same path.
e Thatis: Ap claims Z’ [~ F'.

e Thus Ar is not a test automaton. Contradiction.

Lisfaef
vk \b lA’gQI?'a) %'/?j

) y) 0o
O b Q
L_= agy,
LK) =5 o €Z* l Jo=1, i;i"' }“67:}
baab €?LC.4) -)
abb ¢’ L("“') $D (aéj)
ba é? L(#) S 4
:l € L) 0K(
abe ¢’ Z-m') 6 b
aba ¥

— 16 — 2014-07-29 — main —

2 :{\‘llé’/‘f
Z‘d (A_'(Q/ZN'/ Q/:F)
0
mLc)*L’N G?I

ol

Ly { e, .. €0 7'0&‘)11i)¢z
and ;I.e'F.ﬁy ;"7(‘%%% ;f
3’ (aéc)w

Xy i

Timed Biichi Automata

[Alur and Dill, 1994]

vs. Timed Automata

&=

¢ is a computation path and run of A.

— 16 — 2014-07-29 — Stba —

press?

gascs gt

New: Given a timed wbrd

(off,0),0 = (off 1), 1

press?, (light,0),1 2 (light,3),4 does A accept it?
press?
—— (bright,3),4 = ... New: acceptance criterion is

Timed Languages

— 16 — 2014-07-29 — Stba —

a, z:=0||byx <2

!
=0 z:a=0 @
bl|a

Definition. A time sequence 7 = 71, 75,... is an infinite sequence of
time values 7; €]R(J{, satisfying the following constraints:

(i) Monotonicity:
T increases strictly monotonically, i.e. 7; < 7,41 for all i > 1.

(i) Progress: For every t € R, there is some 7 > 1 such that 7; > t.

Definition. A timed word over an alphabet X is a pair (o, 7) where

e 0 =01,092, -+ € X¥ is an infinite word over 3, and

e T is a time sequence.

Definition. A timed language over an alphabet ¥ is a set of timed
words over X.

(aa 1)7 (b7 2)’ (a’ 3)7 (b7 4)7 (a” 5)v (b7 6), &/6'ﬁ

visiting accepting state infinitely often.

10/37

1137

Example: Timed Language

— 16 — 2014-07-29 — Stba —

Timed word over alphabet X: a pair (o, 7) where

e 0 =01,09,... is an infinite word over ¥, and
e T is a time sequence (strictly (!) monotonic, non-Zeno).

b A il e
L bep

Lcrt = {((ab)waT) | 31 V] 2 i (TQj < 72j-1 + 2)}

ﬂL“b“L’"'ﬁéaé-w

A B G
20 100 o o—
-0 e~ 12 F1<2
z;j=2'2=lo.o

Typen +2 = 7042 3.0

Timed Biichi Automata nol st

— 16 — 2014-07-29 — Stba —

/

4
Definition. The set ®(X) of clock constraints over X is defined

inductively by
du=xz<cl|lc<x|=d]|d Ads

where € X and ¢ € Q is a rational constant.

-
Definition. A timed Biichi automaton (TBA) A is a tuple
(%, 8,50, X, E,F), where

e Y is an alphabet,

e S is a finite set of states, So C S is a set of start states,
e X is a finite set of clocks, and

e EC S xS xYx2X x ®(X) gives the set of transitions.

An edge (s,s’,a,\,d) represents a transition from state s to state s
on input symbol a. The set A C X gives the clocks to be reset with
this transition, and J is a clock constraint over X.

/

e ' C S is a set of accepting states.

~

12/37

1337

Example: TBA

— 16 — 2014-07-29 — Stba —

A=(%,8,5,X,E,F)
(s,8',a,\,0) € E

@
a z:=0 a, z:=0

(Accepting) TBA Runs

— 16 — 2014-07-29 — Stba —

-)
Definition. A run r, denoted by (5,7), of a TBA (X%, 5,50, X, E, F)
over a timed word (o, 7) is an infinite sequence of the form

(S0, v0) 225 (s1,v1) 22 (s9,10) 25 ...

T1 T2 73
with s; € S and v; : X — R, satisfying the following requirements:

e Initiation: sy € Sy and v(z) =0 for all z € X.

e Consecution: for all ¢ > 1, there is an edge in E of the form
(81;1, SiyOiy Ais 62) such that
o (Vi—1+ (7; — Ti—1)) satisfies d; and
o v; = (Vi1 + (1w — 7i—1))[M = 0].

The set inf(r) C S consists of those states s € S such that s = s; for
\infinitely many ¢ > 0. Y,

Definition. A run r = (5,7) of a TBA over timed word (o, 7) is called
(an) accepting (run) if and only if inf(r) N F # 0.

1437

15/37

Example: (Accepting) Runs

— 16 — 2014-07-29 — Stba —

r: (S0, 0) BN (s1,1) 22, (s2,v2) 23y .. initial and (Si—1, 85,04, Xy 0;) € E, s.t.
T1 T2 T3
(l/i_l-l-(Ti—Ti_l)) '= 51',1/7; = (Vi—1+(?'i_7i—1))[>\i = 0] Accepting iff i’rLf(T)ﬂF 7é 0.

v

leley

b bx <2
.—‘—. -
a z:=0 a, x:=0
Timed word: (a, 1), (b,2), (a,3), (b,4), (a,5),(b,6),...
o Can we construct any run? Is it accepting?

a
1.0

&30, X:0> ——3<5;,0 >2L;<s3,1.o> o
.0

e Can we construct a non-run?

e Can we construct a (non-)accepting run?

o
o, M :"—3 (&.1>T%4(s,,2) oy S8 3)

— 16 — 2014-07-29 — Stba —

The Language of a TBA A

Definition. For a TBA A, the lafiguagé L(.A) of timed words it accepts
is defined to be the set

{(,7) | A has an accepting run over (o,7)}.

For short: L(.A) is the language of A.

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.

16/37

17/37

Example: Language of a TBA

L(A) = {(o,7) | A has an accepting run over (7, 7)}.

@
a z:=0 a, x:=0

L(A) = Lent (= {((ab)‘”,T) ’ EK) V_] > (ng < T2j-1 + 2)})

Claim:

Question: Is L. timed regular or not?

— 16 — 2014-07-29 — Stba —

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]

— 16 — 2014-07-29 — main —

18/37

19/37

The Universality Problem

e Given: A TBA A over alphabet 3.
e Question: Does A accept all timed words over X7
In other words: Is L(A) = {(o,7) | 0 € ¥, T time sequence}.

L=3a.b.cs \74"'

— 16 — 2014-07-29 — Suniv —

20/37

The Universality Problem

e Given: A TBA A over alphabet 3.
e Question: Does A accept all timed words over X7
In other words: Is L(A) = {(o,7) | 0 € ¥, T time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet 3 accepts all timed words over X is I1}-hard.

(“The class IIi consists of highly undecidable problems, including some nonarithmetical sets

(for an exposition of the analytical hierarchy consult, see for instance [Rogers, 1967].)

Recall: With classical Biichi Automata (untimed), this is different:
e Let B be a Biichi Automaton over .

e B is universal if and only if L(B) = 0.
B’ such that L(B') = L(B) is effectively computable.

Language emptyness is decidable for Biichi Automata. 20/37

— 16 — 2014-07-29 — Suniv —
[J

Proof Idea Coupete X

f M

Theorem 5.2. The problem of deciding/whether a timed automa-
ton over alphabet 3 acceptg/all timeg/words over X is H%—hard.

,, II /ﬂo Wkﬁ& 06‘ 13507(\'4[
tep. :Lwﬁéc
Caufédm,f A ,Z“’x T

o Consider a language Lyndec
which consists of the recurfing computations of a 2-c

ter machine M.
e Construct a TBA A from M which accepts the comiplement of L, 4ec, i.€. with
naé ouc‘oe(lua

e Then A is universal if and only if L, 4cc is empty. ..

...which is the case if and only if M doesn’t have a recurring computation.

— 16 — 2014-07-29 — Suniv —

21/37

Once Again: 2-Counter Mach. (Different Flavour)

A two-counter machine M

e has two counters C, D and

a finite program consisting of n instructions.

An instruction increments or decrements one of the counters, or jumps,
here even non-deterministically.

A configuration of M is a triple (i, ¢, d):

program counter i € {1,...,n}, values ¢,d € Ny of C and D.

A computation of M is an infinite consecutive sequence

(1,0,0) = (ip, co, do), (i1, c1,d1), (i2, c2,d2), . ..
that is, (ij11,cj4+1,dj41) is a result executing instruction i; at (i;,c;, d;).
A computation of M is called recurring iff i; = 1 for infinitely many j € INy.

22/37

— 16 — 2014-07-29 — Suniv —

Step 1: The Language of Recurring Computations

— 16 — 2014-07-29 — Suniv —

e Let M be a 2CM with n instructions.

Wanted: A timed language Lyu4e. (over some alphabet) representing exactly
the recurring computations of M.
(In particular s.t. Lyngec = 0 if and only if M has no recurring computation.)

e Choose ¥ = {b1,...,bp,a1,az} as alphabet.

o We represent a configuration (i, ¢, d) of M by the sequence

d
bi aj...ay ag...a2:b1aia2

c times d times

23/37

Step 1: The Language of Recurring Computations

— 16 — 2014-07-29 — Suniv —

Let Lyngec be the set of the timed words (o, 7) with 55\
o o is of the form b;, a$*ad'b;,a2ad? . .. 4,
e (i1,c1,d1), (ia,co,da),. .. is a recurring computation of M. “
T
e For all j € Ny,
o the time of b;; is j. 1
o if Cj+1 = Cj:
for every a; at time ¢ in the interval [j,j + 1] 5
there is an a7 at time ¢ + 1, 73

o ifcjp1=c;+1:
for every a; at time ¢ in the interval [j + 1,7 + 2],
except for the last one, there is an a; at time t — 1,
o if Cji+1 =Cj — 1:
for every a; at time ¢ in the interval [, + 1],
except for the last one, there is an a; at time ¢t + 1,

And analogously for the as's.
24/37

Step 2: Construct “Observer” for Lec

— 16 — 2014-07-29 — Suniv —

Wanted: A TBA A such that L(A) = Lundec,
i.e., A accepts a timed word (o, 7) if and only if (o, 7) ¢ Lyndec-

Approach: What are the reasons for a timed word not to be in Ly,gec?

Recall: (o,7) is in Lyngec if and only if:
o 0 =b;aad b;,as?ad

® <i17 C1, d1>a <i27 C2, d2>a cee
is a recurring computation of M.

o the time of b;, is j,

® iij+1:Cj (:Cj+1,:Cj71)Z

(i) The b; at time j € IN is missing, or there is a spurious b; at time t €]j,j + 1.
(ii) The prefix of the timed word with times 0 <t < 1 doesn’t encode (1,0, 0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j + 1, j 4+ 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1].

25/37

Step 2: Construct “Observer” for L, qec

— 16 — 2014-07-29 — Suniv —

Wanted: A TBA A such that L(A) = Lundec,
i.e., A accepts a timed word (o, 7) if and only if (0,7) ¢ Lundec-

Approach: What are the reasons for a timed word not to be in Ly,gec?

(i) The b; at time j € IN is missing, or there is a spurious b; at time t €]j,j + 1[.
(ii) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0).
(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j + 1,7 + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j, 7 + 1].

Plan: Construct a TBA Ay for case (i), a TBA Ay for case (i), a TBA
Ayecur for case (iii), and one TBA A; for each instruction for case (iv).

Then set
-’4 = AO U Amit) -Arecur U U Az

1<i<n

25/37

Step 2.(i): Construct Ay

— 16 — 2014-07-29 — Suniv —

(i) Theb; at time j € IN is missing, or there is a spurious b; at time t €7, j+1].

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(ii): Construct A;n;;

— 16 — 2014-07-29 — Suniv —

(ii) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0).

e |t accepts

{(0j,75)jem, | (00 # b1) V (10 #0) V (11 # 1)}

26,37

27/37

Step 2.(iii): Construct A ecyr

— 16 — 2014-07-29 — Suniv —

(iii) The timed word is not recurring, i.e. it has only finitely many b;.

o A, ccur accepts words with only finitely many b;.

28/37

Step 2.(iv): Construct A;

— 16 — 2014-07-29 — Suniv —

(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1[.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.
Once again: stepwise. Az is AU --- U AS.

° A% accepts words with b7 at time j but neither b3 nor bs at time j + 1.
“Easy to construct.”

o AZis
% % —ay,r =1
ay
I by R <1
Lo 0y Ly
z:=0 U z:=0
z#1

o A2 accepts words which encode unexpected increment of counter C.

o A% ..., AS accept words with missing decrement of D. 20/37

— 16 — 2014-07-29 — main —

Aha, And...?

30/37

Consequences: Language Inclusion

— 16 — 2014-07-29 — Sjaund —

e Given: Two TBAs A; and Ay over alphabet B.
o Question: Is £L(A;) C L(A3)?

Possible applications of a decision procedure:

o Characterise the allowed behaviour as A and model the design as A;.

e Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

o If language inclusion was decidable, then we could use it to decide
universality of A by checking

where A, is any universal TBA (which is easy to construct).
3137

Consequences: Complementation

— 16 — 2014-07-29 — Sjaund —

e Given: A timed regular language W over B
(that is, there is a TBA A such that £(A) = W).

o Question: Is W timed regular?

Possible applications of a decision procedure:
e Characterise the allowed behaviour as A and model the design as Aj.

o Automatically construct A3 with L(A3) = L(Az) and check
L(A) N L(As) =0,

that is, whether the design has any non-allowed behaviour.
e Taking for granted that:

e The intersection automaton is effectively computable.

e The emptyness problem for Biichi automata is decidable.
(Proof by construction of region automaton [Alur and Dill, 1994].)

32/37

Consequences: Complementation

— 16 — 2014-07-29 — Sjaund —

e Given: A timed regular language W over B
(that is, there is a TBA A such that £(A) = W).

o Question: Is W timed regular?

o If the class of timed regular languages were closed under
complementation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the ITi-hardness of the inclusion
problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

a a a
Ut =20
xr:=0 " =1

L(A) = {(a”, (ti)ien,) | Fi € No Fj > i: (t; =t; + 1)}

Complement language:

L(A) ={(a”, (ti)ien,) | no two a are separated by distance 1}. 3337

Beyond Timed Regular

%’ 34/37
Beyond Timed Regular
With clock constraints of the form
r+y<a+y

we can describe timed languages which are not timed regular.
In other words:
o There are strictly more timed languages than timed regular languages.
o There exists timed languages L such that there exists no A with L(A) = L.

X:z q
Example: ° 4I

PR L —

2
c ¥ I

— 16 — 2014-07-29 — Sbeyond —

{((abc)?,7) |V j.(135 — T35-1) = 2(73j—1 — T3j-2)} 3537

— 09 - 2013-05-29 — main —

hat is a PLC?

hat’s special about PLC?

— 09 - 2013-05-29 — Splc —

3/50

microprocessor, memory,
timers

digital (or analog) /O ports

possibly RS 232,
fieldbuses, networking

robust hardware
reprogrammable

standardised programming

model (IEC 61131-3) ;
/50

here are PLC employed?

09 — 2013-05-29 — Splc

e mostly process
automatisation

e production lines
o packaging lines
o chemical plants
o power plants

o electric motors,

pneumatic or hydraulic
cylinders

e not so much: product
automatisation, there

o tailored or OTS
controller boards

o embedded controllers

° ...
6/50

o are PLC programmed?

09 - 2013-05-29 — Splc

o PLC have in common that they operate in a cyclic manner:

read inputs

e compute

write outputs

o Cyclic operation is repeated until external interruption
(such as shutdown or reset).

o Cycle time: typically a few milliseconds. [?]

o Programming for PLC means providing the “compute” part.

o Input/output values are available via designated local variables.

7/50

hy study PLC?

2013-05-29 — Splc

09

— 16 — 2014-07-29 — main —

Note:
the discussion here is not limited to PLC and IEC 61131-3 languages.

Any programming language on an operating system with at least one
real-time clock will do.
(Where a real-time clock is a piece of hardware such that,

we can program it to wait for ¢ time units,
we can query whether the set time has elapsed,

if we program it to wait for ¢ time units,
it does so with negligible deviation.)

And strictly speaking, we don't even need “full blown” operating systems.

PLC are just a formalisation on a good level of abstraction:

there are inputs somehow available as local variables,

there are outputs somehow available as local variables,
somehow, inputs are polled and outputs updated atomically,
there is some interface to a real-time clock.

References

12/50

36/37

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed
automata. Theoretical Computer Science, 126(2):183-235.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time
Systems - Formal Specification and Automatic Verification. Cambridge

University Press.

3737

— 16 — 2014-07-29 — main —

